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1 Introduction of the problem

1.1 General description of galactic magnetic fields

Magnetic fields are ubiquitous in the Universe. They are present in our solar system, in stars,
in the Milky Way, in other low and high redshift galaxies, in galaxy clusters, in superclus-
ters and even in voids of the Large Scale Structure (LSS). The magnetic field strength in
galaxies is always of the order of 1 ÷ 10µG, independently of the galaxy redshift, and also
the magnetic fields in clusters are of the order of µG [4]. These magnetic fields have large
and extensive domains in which they are nearly uniform and of comparable strength, even
thought they cannot be strongly homogeneous because of the uniformity of the CMB. The
statements collected above rest on various detection techniques ranging from Faraday rota-
tion, to synchrotron emission, to Zeeman splitting of clouds of molecules with an unpaired
electron spin [3]. The experimental evidence suggests also that the strength of these mag-
netic fields is, in the first approximation, independent on the physical size of their domains.
Magnetic fields in astronomical structures have infact different sizes, from stars (R ' 106km)
to galaxy clusters (R ' 1019km), and this is very surprising. It is plausible to argue that
large-scale magnetic fields have comparable strengths at large scales because the initial con-
ditions for their evolutions (magnetogenesis) were the same, for instance at the time of the
gravitational collapse of the protogalaxy.

The origin of the magnetic fields observed in the galaxies and in the clusters of galaxies
is still unknown. Many people suggested that magnetic fields are produced mainly by am-
plification of pre-existing weaker magnetic fields via different type of dynamo (conversion of
the kinetic energy of the turbulent motion of the conductive interstellar medium into mag-
netic energy) and via flux-conserving compression during gravitational collapse accompanying
structure formation [2]. These magnetic fields has to live in a medium with high electrical
conductivity in order to survive, and this condition is indeed fulfilled for the cosmic medium
during most of the evolution of the Universe. Because of the Universe high conductivity, two
important quantities are almost conserved during Universe evolution: the magnetic flux and
the magnetic helicity. Regarding planets or stars (and partially galaxies), magnetic fields
tipically dissipate their energy into thermal and turbolent motions of astrophysical plasmas
on short distance scales, so a continuous re-generation of the field is needed on time scales
shorter than the life time of the astronomical object carrying the field [4]. Weak magnetic
fields on the largest distance scales, from the large scale fields in the galaxies to those in
galaxy clusters, might not have enough time to dissipate their energy into plasma motions.

Anyway, today the efficiency of such a kind of MHD engines has been put in question
both by improved theoretical work and new observations of magnetic fields in high redshift
galaxies [2]. Moreover in any case the dynamo and compression amplification mechanisms
can act only if a seed magnetic field is present (that could be tiny or not), which has to be
generated by a different mechanism that preexist the structure formation epoch. Therefore
the origin of galactic magnetic fields has to be traced back to a time comparable, at least,
to that of galaxy formation. Magnetic fields may have partecipated to a relevant number
of processes which took place in the early Universe, but unfortunatly the existing data on
magnetic fields in galaxies or galaxy clusters can only provide indirect constraints on the
origin and the properties of the seed fields.
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Figure 1: Typical azimuthal magnetic field component in a dynamo model, thanks to R.
Stepanov, ICMM Perm

1.2 A brief report on dynamo and compression amplication mechanisms

In an electrical conducting fluid with electrical conductivity σ, the time evolution of the
magnetic field ~B (magnetic diffusivity equation) is given by [3]

∂ ~B

∂t
= ∇× (~v × ~B) +

∇2 ~B

4πσ
(1.1)

that leads to a simple description of the conversion from kinetic energy to magnetic energy.
The first time derivative of the magnetic field results from the balance of the dynamo term
(first term on the RHS) that contains the bulk velocity of the plasma ~v and the magnetic
diffusivity who damps the magnetic field (second term on the RHS). If the dynamo term
dominates, the magnetic field could be amplified thanks to the differential rotation of the
plasma. Generally speaking, also hydrodynamic turbolence and fast reconnection of magnetic
field lines are required in order to provide an efficient dynamo mechanism. MHD can be
studied in two different (but complementary) limits: the ideal (superconductive) limit (σ →
+∞) and the real (resistive) limit (σ finite). This is related to two quantities, namely [2]

d

dt

∫
Σ

~B · dΣ = − 1

4πσ

∫
Σ
∇× (∇× ~B) · dΣ magnetic flux (1.2)

d

dt
H =

d

dt

∫
V
d3x ~B · ~A = − 1

4πσ

∫
V
d3x ~B · (∇× ~B) magnetic helicity (1.3)

where Σ is an arbitrary closed surface that moves with the plasma, and V is a volume through
the boundary of which no magnetic field lines cross. In the ideal MHD limit the magnetic flux,
as well as magnetic helicity, is exacly conserved whereas in the resistive limit the magnetic flux
and helicity are dissipated with a rate proportional to σ−1. The conservation of magnetic flux
implies that lines of force move together with the fluid, and the field in the ideal MHD limit is
said to be frozen-in. Assuming that the Universe expands isotropically and disregarding any
other effect that could produce a variation of the intensity or the direction of the magnetic
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field, if the field is frozen-in then it scales as (called also conformal scaling)

B(t) = B(ti)
a(ti)

2

a(t)2
(1.4)

Instead the conservation of magnetic helicity (closely analogous to vorticity) corresponds
on the conservation of the topological properties of the magnetic flux lines. Infact H can be
identified with the Chern-Simon number, and is proportional to the sum of the number of links
and twists of the magnetic field lines. Defining then L as the typical scale of spatial variation
of the magnetic field intensity, the typical time scale of resistive phenomena turns out to be
tσ = 4πσL2. Suppose that the time scale of the system is given by tU ' H−1

0 ' 1018s: then
Lσ =

√
tUσ−1 ' 1AU gives an upper limit on the diffusion scale for a magnetic field whose

lifetime is comparable with the age of the Universe at the present epoch. That means that
magnetic fields with correlation scale L < Lσ are diffused, and we are in the resistive regime:
this is consistent with the experimental evidence that in galaxies there are no magnetic
fields coherent over scales smaller than 10−5 pc [3]. In the following we present a simple
argument in order to estimate the required strength of the primordial magnetic field. Since
the gravitational collapse occurs at high conductivity, the magnetic flux and the magnetic
helicity are both conserved. Right before the formation of the galaxy a patch of matter of
roughly 1 Mpc collapses by gravitational instability. Right before the collapse the mean energy
density of the patch, stored in matter, is of the order of the critical density of the Universe.
Right after collapse the mean matter density of the protogalaxy is, approximately, six orders
of magnitude larger than the critical density. Since the physical size of the patch decreases

from 1 Mpc to 30 kpc the magnetic field increases (see equation 1.4) of a factor
(
ρa
ρb

) 2
3 ' 104

where ρa and ρb are respectively the energy densities right after and right before gravitational
collapse. The correct initial condition in order to turn on the dynamo instability would be
B ∼ 10−23G over a scale of 1 Mpc, right before gravitational collapse. The estimates relies
on the assumption that the amplification occurs over thirty e-folds while the magnetic flux
is completely frozen in, but in the real situation the achievable amplification is much smaller
and a good seed would be B ≥ 10−13G before the collapse.

Regarding the other (but not unique) possible mechanism related to the generation of
galactic magnetic fields, it deals with the protogalactic cloud collapse. The magnetic field
results directly from a primordial field which gets adiabatically compressed in the collapse,
and analogously to the equation 1.4 we can conclude that the conservation of magnetic flux
in the intergalactic medium implies

Bprim = Bgal

(
ρcosmic

ρgal

) 2
3

(1.5)

The present time ratio between the interstellar medium density in the galaxies and the density
of the IGM is ρIGM

ρgal
∼ 10−6 and Bgal ∼ 10−6G, therefore the required strength of the cosmic

magnetic field at the galaxy formation time (z ∼ 5), adiabatically rescaled to present time, is
Bprim ∼ 10−10G. This agree with with our observational limits and may produce observable
effects on the anisotropies of the CMB background radiation.

Astrophysicists have to their disposal some particular informations: the observations
of intensity and spatial distribution of the galactic and intergalactic magnetic fields and the
structure of magnetic fields in objects at high redshift. Recent observations of strong magnetic
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fields in galaxy clusters suggest that the origin of these fields may indeed be primordial. It
is useful to observe that primordial magnetic fields are not necessarily produced in the early
Universe, i.e. before recombination time. Several alternative astrophysical mechanisms have
been proposed like the generation of the fields by a Biermann battery effect. In the presence
of a thermal plasma of protons and electrons, the generalized Ohmic electric field has a
termoelectric correction ~Eterm ∝ −∇peene

where pe = (kBneTe) is the electron pressure ne and
Te are the electron density and temperature. When the temperature and density gradients
are misaligned, taking the curl of ~Eterm leads to

∇× ~Eterm ∝ −
∇ne ×∇pe

en2
e

(1.6)

and therefore the integral of the electric field over a closed loop in the plasma is nonzero.
According to Faraday’s law, this electromotive force generates a magnetic flux. Biermann’s
battery can explain both a top down and bottom up scenario for magnetogenesis, but the
generated magnetic fields are very weak (B ∼ 10−20÷10−10G) -especially for galaxy clusters-
and they need to be amplified by some kind of plasma instabilities (magnetorotational) or by
dynamo mechanism. Therefore such a scenario would lead us to face an unnatural situation
where two different mechanisms are invoked for the generation of magnetic fields in galaxies
and clusters, which have quite similar characteristics and (presumably) merge continuously
at the border of the galactic halos. One of the other possibility is that magnetic fields may
have been generated by batteries powered by starbursts or jet-lobe radio sources (AGNs,
Active Galactive Nucleous). However, preexisting magnetic fields may be required to trigger
starbursts or to carry away the huge angular moment of the in-falling matter of black holes:
a primordial seed magnetic field is generally required [3]. In conclusion both the primordial
and the astrophysical hypothesis for the origin of the seeds demand an efficient (large-scale)
dynamo action.
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2 A primordial seed for the magnetic field

2.1 Some remarks on primordial magnetic fields

We have seen in the previous paragraphs that there remain unresolved difficulties in explaining
how the seed magnetic fields lead to fields of the observed strength and coherence scales. The
possibility of the fields being completely primordial (created in the early universe, during
inflation or during subsequent phase transitions) has to be taken into account, but unknown
physics (non minimal coupling with EM field) must be invoked in order to explain the present
galactic magnetic field at all scales. Infact the electroweak transition and the QCD transition
are both not first order and actually they are not even true phase transition but just crossovers:
this implies that magnetic fields could be produced only on very small scales, up to Hubble
radius at magnetogenesis. However many modifications of the SM (Standard Model) lead to a
first order (electroweak) phase transition, that proceeds via bubble nucleation which is a very
violent event likely to lead to turbulence in the cosmic plasma. In a highly conducting cosmic
plasma, turbulent flow generates eddies and magnetic fields in the plasma as a consequence
of MHD turbulence [2].

However primordial magnetogenesis also takes place during recombination, as we can see
using Maxwell theory and standard cosmological perturbation theory for the cosmic plasma.
Within first order cosmological perturbation theory and within the strong coupling limit of
electrons and protons, no magnetic fields form due to the inhomogeneities of the matter
distribution of the Universe. For this to happen we need a current j with non-vanishing
vorticity, since by Ampere’s law in Gaussian units ∆ ~B = −4π

c ∇×~j. In the linear cosmological
perturbation theory the charge current is ~j = e(np−ne)~v where ~v is a scalar perturbation, i.e.
a gradient. So even if at second order in the strong coupling limit in order to get np 6= ne, we
need to go to the second order in inhomogeneities in order to achieve∇×~j = e∇(np−ne)×~v 6=
0.

2.2 General description of the setting

Let’s consider a general spacetime with a Lorentzian metric gµν of signature (−,+,+,+).
We introduce a family of observers with worldlines tangent to the timelike 4-velocity vector
uα = dxα

dτ where τ is the observers’ proper time, so that uαuα = −1. The vector uα determines
the time direction, whereas the tensor hαβ = gαβ +uαuβ projects orthogonal to the 4-velocity
uα into observers’ instantaneous rest space at each event. The Ehlers-Ellis 3+1 formalism is
a covariant Lagrangian approach; i.e., every quantity has a natural interpretation in terms of
observers comoving with the fundamental 4-velocity [6, 7].

The vector field uα and its tensor counterpart hαβ allow for a unique decomposition of
every spacetime quantity into its irreducible timelike and spacelike parts. These fields are
also used to define the covariant time and spatial derivatives of any tensor field T γδ...αβ... by
Ṫ γδ...αβ... = uκ∇κT γδ...αβ... and DκT

γδ...
αβ... = hµκhναh

ρ
βh

γ
ζh

δ
υ · · · ∇µT

ζυ...
νρ... .

We can decompose the projected covariant derivative Dνuµ = hαµh
β
ν∇βuα = ∇νuµ +

uνu
γ∇γuµ into its antisymmetric, symmetric traceless and trace part

ωµν + σµν +
1

3
θhµν (2.1)

with ωµν = 1
2(Dµuν −Dνuµ), σµν = 1

2(Dµuν +Dνuµ)− 1
3θhµν and θ = ∇αuα. These quan-

tities are known as the rotation tensor, shear tensor and expansion of the congruence family
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of geodesics defined by uα. By construction we have σµνuµ = 0 = ωµνu
µ = Aµu

µ, where
the 4-projected acceleration vector Aµ is equal to uγ∇γuµ. We note that Dνuµ describes the
relative motion of neighbouring observers: the volume scalar determines the average separa-
tion between neighbouring observers, the effect of the vorticity is to change the orientation
of a given fluid element without modifying its volume or shape whereas the shear changes
the shape but leaves the volume unaffected. If we define the effective volume element in the
observer’s instantaneuous rest space as εµνλ = uτ ετµνλ, where ετµνλ is the spacetime volume
(four dimensional totally antisymmetric tensor with ε0123 =

√
−g), then the vorticity vector

will be defined as ων = εµνλω
νλ with ωνλ projected antisymmetric vorticity (rotation tensor).

In the following, we try to follow mainly the notation of the paper of Fenu et al. [13]
but using other references as a primary source in order to explain clearly almost all details
of the calculations. Let’s consider the stress-energy tensor of a species s Tµνs , where s can
be any type of matter, including electromagnetic fields and scalar fields. In our specific case
we deal with r = p, e, γ, F (protons, electrons, photons and EM field respectively). The
4-velocity of species s is uµs = γs(u

µ + vµs ), with uµv
µ
s = 0 and γs = (1 − v2

s)
− 1

2 . The global
continuity equation ensures that

∑
s∇νT

µν
s = 0, whereas for every single species we have

∇νTµνs =
∑

r C
µ
sr, where Cµsr = −Cµrs encodes all the effects of interactions with species r.

With respect to our observers, the energy-momentum tensor of a general fluid decomposes
into its irreducible parts as [7]

Tµνs = ρsu
µuν + psh

µν + 2q(µ
s u

ν) + πµνs (2.2)

where there is an energy density ρs = msns, a pressure ps = 1
3v

2
sρs, a momentum density

qµs = ρsv
µ
s and an anisotropic stress πµνs = ρs

(
vµs vνs − 1

3v
2
sh

µν
)
. In the rest frame, electron

(s = e) and protons (s = p) are well described by dust matter, whereas photons (s = γ) are
relativistic massless particles. Therefore there is a unique hydrodynamic 4-velocity, relative
to which qµs and πµνs are identically zero and the effective pressure reduces to the equilibrium
one. In formulas, there is a frame R in which TR,µνs = (pRs +ρRs )uµsuνs+pRs g

µν , with pRs = wsρ
R
s

and ρRs = ρs
γ2s
. We choose consistently wp = we = 0 (pressureless perfect fluid) and wγ = 1

3

(relativistic perfect fluid). Regarding electromagnetic field, Maxwell equations in general
spacetime can be rewritten -working in Gaussian units- as ∇[µFνσ] = 0 and ∇νFµν = jµ.
where Fµν is the antisymmetric electromagnetic Faraday tensor and jµ is the 4-dimensional
electromagnetic current. The electric and magnetic field experienced by our uα observer are
Eµ = Fµνu

ν and Bµ = 1
2εµνσF

νσ (where Eµuµ = Bµu
µ = 0). Following the decomposition

of the 4-vector current with respect to the uα congruence jµ = %uµ + j⊥,µ, with % = −jαuα
representing the charge density and j⊥,µ = hµν jν the projected current. Relative to a funda-
mental observer, each one of Maxwell’s equations decomposes into a timelike and a spacelike
component [7, 13]:

• Timelike component of Maxwell equations:

Ḃ⊥µ = −2

3
θBµ + (σµν − ωµν)Bν − εµνρDνEρ − εµνλaνEλ (2.3)

Ė⊥µ = −2

3
θEµ + (σµν − ωµν)Eν − εµνρDνBρ − εµνλaνBλ − j⊥µ (2.4)

• Spacelike component of Maxwell equations (constraints):

DµB
µ = −ωµEµ (2.5)

DµE
µ = ωµB

µ + % (2.6)
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In our specific case, if ns is the number density in the rest frame for s = p,e and e is the unit
charge, then % = e(γpnp−γene) and j⊥,µ = e(γpnpv

µ
p −γenevµe ). Moreover in our specific case

we have an electromagnetic field contribution to the energy-momentum tensor of the baryons

(
∇νTµνB

)
EM

= −
(
∇νTµνF

)
= −

(
−
∑
B

Fµσ j
σ
B

)
= Fµσ (qBnBu

σ
B) (2.7)

where qB is the baryon charge.

2.3 Euler equations for electrons and protons

The formalism described above applies for any covariant choice of uα, but in a multi-fluid
situation there could be different choices due to the distinct 4-velocities of different particles
species. Each choice leads a different 3+1 covariant description, and one can regard such
choice as partial (physical) gauge fixing. During the radiation era, the components of the
multifluid are electrons, protons and photons and we can safely neglect the role of dark
matter component (CDM). At temperatures T ∼ me, where me is the mass of the electron,
the couplings between electrons and protons (and generically ions) and electrons and photons
are very strong. As we said before, there couldn’t be any kind of differential motion between
different particles species and no magnetic field is generated at that time. Afterwards, from
the end of particle/anti-particle annihilation up to now (T . me) electrons and photons
are still tightly coupled through Thomson scattering (the scattering between photons and
protons is weaker by a factor of (memp )2)1 whereas protons and electrons are coupled by means
of Coulomb scattering [10]. The difference between momentum transfer rates contributions
of these interactions gives rise to a small difference in the electron and proton fluid rotational
velocities, that bring to the generation of a current with nonvanishing vorticity (and therefore
of a magnetic field). In order to write the Euler equation for the proton and electron velocities,
let’s recap that ∇νTµνs =

∑
r C

µ
sr for every species s, where Cµsr is evaluated in the uα frame.

Any difference between such uα’s will be O(ε) in the almost-FLRW case, that is the case in
which quantities vanish in the FLRW limit2, because it is the only possibility to linearize
about a FLRW model in a consistent 1+3 covariant and gauge invariant way. Having chosen
a preferred uα-frame, we need to consider the relative velocities vµs of each species in that
frame. If they are close to each other (all species have nonrelativistic motion with respect to
the uα-frame), then O(v2

s) terms can be dropped, that is we can linearize in relative velocities
even without linearizing in kinematic, dynamic and elecrodynamics quantities [6]. This is
what we have to do in order to find all contributions due to the Coulomb and Thomson
interactions [11], whereas for the coupling of protons and electrons with the electromagnetic
field we already found the exact expression in equation 2.7. The idea is to use relativistic
kinetic theory in order to build up a full microscopic description of the evolution of the phase
space distribution fs(x, p) for one species s by means of the relativistic Boltzmann equation

1After electron-positron annihilation, the average photon energy is much less than the electron rest mass and
the electron thermal energy may be neglected, so that the Compton interaction between photons and electrons,
the dominant interaction between radiation and matter, may reasonably be described in the Thomson limit

2A FRW universe with a unique 4-velocity uα is characterized by the conditions [6]:

• Dynamics: Daρ = Dap = 0, qa = 0, πab = 0

• Dynamics: Daθ = 0, Aa = ωa = 0, σab = 0

• Gravito-electic and gravito-magnetic fields: Eab = Hab = 0
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dfs
dλ = pµ ∂fs∂xµ − Γµρσpρpσ

∂fs
∂pµ = C[f ] where λ is a parameter, pµ = dxµ

dλ is the momentum of the
particle and C[f ] is the collision term. Regarding Coulomb interaction, using the Coulomb
cross section σCoul and remembering the form of the collision term (proportional to the
density nB) it is easy to find the Coulomb contribution to the proton and electron momentum
transfer rates, at first order in their velocities vµB. Let’s consider Thomson scattering instead:
when the radiation is close to blackbody we do not require the full spectral behavior of
the distribution multipoles, but only the energy-integrated multipoles. Moreover the 3+1
formalism forces us to use 3+1 covariant harmonics, that is we split the photon 4-momentum
pµγ into pµγ = Eγ(uµ+ eµ), where eµ =

pµ,⊥γ
Eγ

is the photon’s spatial propagation direction, such
that eµeµ = 1 and eµuµ = 0 and we expand [9]

f(x, p) = f(x,E, e) = F + Fαe
α + Fαβe

αeβ + ... =
∑
l≥0

FAl(x,E)e〈Al〉 (2.8)

C[f ](x,E, e) = b+ bαe
α + bαβe

αeβ + ... =
∑
l≥0

bAl(x,E)e〈Al〉 (2.9)

where eAl = eα1eα2 ...eαl , e〈Al〉 is the symmetric trace-free part of eAl and provides a represen-
tation of the rotation group. FAl(x,E) are the 3+1 covariant distribution function anisotropy
multipoles that are irreducible since they are Projected, Symmetric and Trace-Free (PSTF),
i.e.

Fab...z = F〈ab...z〉 ⇔ Fab...z = F(ab...z), Fab...zu
a = 0, Fab...zh

ab = 0⇒ FAl = F〈Al〉 (2.10)

whereas bAl(x,E) = b〈Al〉(x,E), called scattering multipoles encode the covariant aspects of
particle interactions. The Boltzmann’s equation is then equivalent to an infinite hierarchy of
3+1 covariant multipole equations for each photon energy E

LAl(x,E) = bAl [FAm(x,E)] (2.11)

where LAl(x,E) are the anisotropy multipoles of df
dλ .

The calculations are then pretty straightforward and following Fenu et al. [13] (having
neglected all polarization effects, and also making the approximations mentioned above about
the -nonrelativistic- velocity of the baryonic frame relative to the uα frame) we can easily
obtain also the Thomson contribution to the transfer momentum rate of the baryons. In
conclusion we have (after the projection onto the observers, and indexing each baryon with
B = e,p)

(∇νTµνB )⊥EM = qBnB(Eµ + εµδτv
δ
BB

τ ) (2.12)

(∇νTµνB )⊥Thomson = −ne
(
me

mB

)2

ργσT

[
4

3
(γBv

µ
B − γγv

µ
γ ) +

8

15
Θµ
δ v

δ
B

]
+O(εv2

B, v
3
B) (2.13)

(∇νTµνp )⊥Coulomb = −(∇νTµν,⊥e )Coulomb = e2nenpηC(γev
µ
e − γpvµp ) +O(εv2

B, v
3
B) (2.14)

where qB is the charge of the baryon, σT = 8πα2

3m2
e

and ηC =
πe2
√
me log(Λ)

T
3
2

with Λ as the
Coulomb logarithm. Having extracted the Euler equation from the previous equations, we
obtain finally (see the equation 44 of [6], after putting w = cs = 0, multiplying by ρs and
projecting)

msns(v̇
µ,⊥
s +Aµs +Kµ

s ) = (∇νTµνs )⊥EM + (∇νTµνB )⊥Thomson + (∇νTµνs )⊥Coulomb (2.15)

Kµ
s =

(
ṅs
ns

+
4

3
θ +Aνv

ν
s +

1

ns
vνsDνns +Dνv

ν
s

)
vµs + (σµν − ωµν)vs,ν + vνsDνv

µ
s (2.16)
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where r, s = p, e.

2.4 Generation of the electric field

Since we know a priori that the final result will be independent from the difference ne − np
(this is due to some approximations we will do, that are consistent with our situation), we
require charge neutrality from the beginning np = ne = n. The dynamical variable of the
problem, as we said also before, is the velocity difference ∆vµpe = vµp − vµe and taking the sum
of equation 2.15 for s = e with β = me

mp
times the same equation 2.15 for s = p we obtain

men(∆v̇µ,⊥pe + ∆Kµ
pe) = neEµ(1 + β) + β

[
(∇νTµνp )⊥Coulomb + (∇νTµνp )⊥Thomson

]
− (2.17)

−
[
(∇νTµνe )⊥Coulomb + (∇νTµνe )⊥Thomson

]
(2.18)

where we neglected Lorentz force because it is of second order in velocities. Since by thermal
collision the velocity of hydrogen atoms is close to the velocities of electrons and protons, we
choose to work with the center of mass velocity of baryons defined by vµB =

∑
smsv

µ
s∑

sms
. Making

all explicit in equation 2.17 and substituting each ve and vp we obtain

men(∆v̇µ,⊥pe + ∆Kµ
pe) = neEµ(1 + β) + (β + 1)

[
e2n2ηC∆vµpe

]
− (2.19)

−4

3
σTnργ

[
(1− β3)

(
∆vµBγ +

2

5
ΘµνvB,ν

)
− 1 + β4

1 + β

(
∆vµpe +

2

5
Θµν∆vpe,ν

)]
(2.20)

Now it is clear an electric field (and thus a magnetic field, via Maxwell equations 2.3, provided
E has a transverse component) can be generated by a nonzero velocity difference ∆vpe,ν and
∆vBγ,ν . Using Maxwell equations in the covariant 3+1 form and neglecting higher order
terms, we can easily derive an expression for ∆vµpe

jµpe = en∆vµpe = curlBµ − Ėµ,⊥ − 2

3
θEµ + σµνEν (2.21)

To proceed further, we have to make some estimates about different time-scales of our prob-
lem, namely the time-scale of the evolution of the plasma τevol and of the Coulomb and
Thomson interactions τC and τT . Skipping some technical details (the interested reader is
referred directly to the Fenu’s et al. article [13]), it follows that the largest contribution to the
electric field is due to the velocity difference ∆vµBγ because other contributions are negligible
in the period (from very high z to nowadays) and on the scale of interest. This is true even
taking into account the recombination at z ' 1080, and we obtain the following expression
for the electric field [12]

Eµ = −1− β3

1 + β

4ργσT
3e

(
∆vµBγ +

2

5
ΘµνvB,ν

)
(2.22)

where the first contribution can be considered as an Ohm-like contribution (since it is pro-
portional to the current density e∆vµBγ) and the second one is due to the anisotropic stress.
It is important to notice that the contribution vanish for β → 1 (due to the fact that it is
originated from the velocity difference between protons and electrons in their interactions
with photons) and that it is independent from the density of free electrons. The last remark
ensures that the electric field is generated also after the recombination. A last word about the
relation between ∆vµBγ and ∆vµpe: it can proved (throughout an estimation via time scales, as
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before) that ∆vµpe � ∆vµBγ for all relevant times. This means that ∆vµBγ → 0 can be taken
early in the calculations, but only provided that ∆vµpe � ∆vµBγ (we can consider baryons as
a single fluid).

In order to go further, we need to know how to deal with the explicit pertubations
around Friedmann background. In the Poisson gauge, up to second order (i.e. no tensor
perturbations), the FLRW metric can be written as (with conformal time η)

ds2 = a2
[
−(1 + 2Φ)dη2 + 2Bidx

idη + (1− 2Ψ)δijdx
idxj

]
(2.23)

where Φ, Ψ are scalar perturbations and Bi is a vector divergenceless perturbation. It is
useful to decompose perturbed quantities in a background orthonormal tetrad, i.e. in a local
inertial frame: this facilitates the separation between the magnitude of the momentum uα

and its direction (represented by a spacelike unit vector). We will use the Latin alphabet for
tetrad basis, that are defined by

eµae
ν
bgµν = ηab eaµe

b
νg
µν = ηab (2.24)

where η = diag(−1, 1, 1, 1) is the Minkowski metric. Since the tetrad labels run from 0 to
3, we use Latin indices starting from the letter a with values ranging from 1 to 3 to label
the spacelike vectors or forms, whereas the label o is for the timelike vector and form in
a tetrad. We work with a comoving tetrad related to the uα, defined in such a way that
eµo = uµ holds. The gauge freedom related to the arbitrariness in the choice of a gauge for
the perturbed metric can be encoded in a gauge a vector field X, defined as a vector field
on the 5-dimensional manifold N = [0, 1] ×M with the property X4 = 1, where M is the
spacetime manifold [5]. If λ ∈ [0, 1], thenMλ =M×{λ} is equal to the FLRW universe for
λ = 0 and to the perturbed FLRW universe for λ = 1. The integral curves of the vector field
X define a one parameter group of diffeomorphisms φλ(·) and they are always transverse to
the spacetime leavesMλ, since the last component of X is always nonzero. Therefore we can
construct the perturbed tetrads by pulling back tetrads of FLRW universe to the perturbed
one, obtaining explicitly (remember that we are working with a comoving tetrad)

eµo =
1

a
(1− Φ +

3

2
Φ2)δµo −

1

a
Baδµa (2.25)

eµa =
1

a
(1 + Ψ +

3

2
Ψ2)δµa (2.26)

and the corresponding expressions for eoµ and eaµ. Derivatives along the tetrad vectors are
defined as ∂a = eµa∂µ. We can also derive the (perturbed) Ricci rotation coefficients Ωabc =
ηbde

d
νe
µ
a∇µeνc for our orthonormal tetrads in a straightforward way in order to make explicit

the covariant derivative ∇aXc
b = eµa∂µX

c
b + Ω d

a bX
c
d − Ω c

a dX
d
b .

2.5 Generation of the magnetic field

Let’s restart from the Maxwell’s equations 2.3. Rewriting each term on the RHS in the
tetrad basis we obtain (curlE)a = εabc∇bEc = εabc∂d [(1−Ψ)Ec], eaµεµνρu̇νEρ = εabcu̇bEc =

εabc(∂bΦ)Ec. On the LHS we get a−1∂o(a
2Ba), and remembering that at first order the electric

field is curl-free (εabc∂bEc = 0) the evolution equation for the magnetic field in coordinate
basis becomes

a−1(a2Ba)′ = −aεabc∂b [(1 + Φ−Ψ)Ec] (2.27)
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Let us now consider the equation of the generated electric field 2.22: rewriting it using the
ionization fraction xe = ne

ne+nH
, neglecting β � 1 and recognizing that the RHS side is

proportional to (∇νTµνB )⊥Thomson we obtain e(ne +nH)xeE
µ = (∇νTµνB )⊥Thomson. Substituting

the expression for Eµ into the equation 2.27 we get finally

(a2Ba)′ = − a2

e(ne + nH)xe
εabc∂b

[
(1 + Φ−Ψ)(∇νTB,νc)⊥Thomson

]
(2.28)

where B here is related to protons, electron and even hydrogen atoms.
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3 Power spectrum and strength of the generated magnetic field

3.1 A second order equation for magnetogenesis with all sources contributions

It is more convenient from the numerical point of view to describe the angular dependence
of the radiation functions using the normal modes component, that is to decompose the
quantities evaluated in the local inertial frame into multipoles: [5]

Θa1...al(x
0, ~x)na1 ...nal =

∫
d3k

(2π)
3
2

∑
lm

Θm
l (η,~k)Glm(~k, x0, ~x, ~n) (3.1)

Glm(~k, x0, ~x, ~n) = i−l
(

4π

2l + 1

)
ei
~k·~xY lm(~n) (3.2)

where the components Θm
l (η,~k) are the time-dependent components in Fourier space of the

spherical harmonics decomposition. The helicity basis is well suitable for the decomposition
of tensors: we define

ēi(0) = −ēi3 ēi(+) =
1

2
(ēi1 + iēi2) ēi(−) = −1

2
(ēi1 − iēi2) (3.3)

and their inverse, keeping in mind that this ’vector’ basis transforms in the background
spacetime with the Euclidean metric δij . It is particularly useful to decompose Fourier modes
in the helicity basis (i.e. into a scalar and a vector part) qi = δijqj = q(+)ē

i
(+) + q(−)ē

i
(−) +

q(0)ē
i
(0) and q(h) = qiē

∗,i
(h). For second order perturbations we choose to align the direction

h = 0 with the total Fourier mode ēi(0) = ki. For perturbed vector quantities S, we make
the identification ēa(h) = ēi(h) in order to expand Sa = S(+)e

a
(+) + S(−)e

a
(−) + S(0)e

a
(0) with

S(h) = Saē
∗,a
(h).

In order to make the structure of equations compact, we introduce the notation

K{f1, f2}(~k)

∫
d3k1d

3k2

(2π)
3
2

δ3( ~k1 + ~k2 − ~k)f1( ~k1)f2( ~k2) (3.4)

that will be useful when dealing with term with product of first order quantities. Using the
identities (related to the transformation under a rotation of the helicity basis) iεabckbe

(±)
b =

±kea(±) and ie
(±)∗
a εabckbSc = ±kS(±) and keeping track of the perturbation order we can

rewrite the evolution equation for Ba as

(a2B
(2)
(±)(

~k))′ = ∓ a2
[
E

(2)
(±) +K{(Φ(1) −Ψ(1)), E

(1)
(±)}(~k)

]
(3.5)

Rewriting this equation for the magnetogenesis explicitly using the expression for the gener-
ated electric field Ea we get

(a2B
(2)
(±)(

~k))′ =∓ a2 4σTργ
3e

[V
(2)

(±) +K
{(

δργ
ρ̄γ

+ Φ(1) −Ψ(1)

)
, V

(1)
(±)

}
(~k)−

−
∑
h

K
{
κ(±1, h)

5
Θ±1+h,(1), v

(1)
B,(−h)

}
(~k)] =

=∓ a2 4σTργ
3e

[
S

(±)
1 (~k) + S

(±)
2 (~k) + S

(±)
3 (~k)

]
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where V(h) = vB,(h)−vγ,(h) and κ(g, h) =
√

(4− g2)δ(h, 0)−
√

(2+g)(3+g)
2 δ(h,+)−

√
(2−g)(3−g)

2 δ(h,−).
Of these 3 sources Si(~k) that will appear in the magnetic spectrum only the first one S1(~k) is
a second order contribution, whereas the other two S2(~k) and S3(~k) are product of two first
order contributions.

In order to define the magnetic field power spectrum, we need to rely upon the power
spectrum P (k) of the initial gravitational potential Φin(~k) in the deep radiation era, that is
defined as 〈

Φin(~k)Φ∗in(~q)
〉

= δ(~k − ~q)P (k) (3.6)

The post-processing of the well-known primordial perturbations and their evolution is encoded
in the so-called transfer function: the first and second order transfer functions for a variable
X are defined (implicitly) as

X(1)(~k, η) = χ(1)(~k, η)Φin(~k) (3.7)

X(2)(~k, η) = K{χ(2)( ~k1, ~k2, η)Φin( ~k1)Φin( ~k2)}(~k) (3.8)

where we require χ(2)( ~k1, ~k2, η) = χ(2)( ~k2, ~k1, η) in our calculations. In our case from equation
of magnetogenesis we can relate the transfer function of the magnetic field to the transfer
functions of the sources Sa, noticing that a and ρ̄γ depends on the conformal time η

a2BSi(±)(
~k1, ~k2, η) =

4σTk

3e

∫ η

dη′a2(η′)ρ̄γ(η′)S(±)
i ( ~k1, ~k2, η) (3.9)

where the final time of integration should be chosen after the recombination.

3.2 The power spectrum and the estimate of the field strength

At this point our goal is to have an estimate of the quantity
〈
~B(~x, η) · ~B∗(~x′, η)

〉
, where

the bracket denotes an ensemble average, i.e. an average over many realizations of the
stochastic magnetic field. Actually we can measure only one realization, but using the er-
godic hyphothesis the spatial average over many independent patches of size L � 2π

k is
a good approximation of the ensemble average, especially if the size L is larger than the
cosmological horizon at the time when the magnetic field was generated. If the source
terms are Gaussian random variables, using Wick’s theorem we obtain in Fourier space with
B(±)( ~k1, ~k2, η) =

∑
i B

Si
(±)(

~k1, ~k2, η)

〈
~B(~k, η) · ~B∗(~k′, η)

〉
= δ3(~k − ~k′)PB(k, η) =

δ3(~k − ~k′)
(2π)3

∑
h=±

∫
d3qP (q)P (|~k − ~q|)× (3.10)[

|B(h)(~q,~k − ~q, η)|2 + B(h)(~q,~k − ~q, η)B∗(h)(
~k − ~q, ~q, η)

]
(3.11)

where the δ3(~k − ~k′) is a conseguence of spatial homogeneity. In the following we consider
the quantity k3PB(k, η), since it is dimensionless, and the conformal time of matter-radiation
equality ηeq. We can estimate three different kind of contributions to PB(k, η) related to the
three sources Si on super Hubble scales (see figure 2):

•
√
k3PB(k, η) ∝ k4 η

ηeq
→ Second order contribution velocity ∆vBγ (dot-dashed in the

plot): it can be estimated direcly from the tight coupling expansion of the evolution
equation for the vorticity of baryons (in the tetrad basis up to second order)
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•
√
k3PB(k, η) ∝ k4 η2

η2eq
→ Quadratic term in velocity and density δvBγ

δργ
ρ̄γ

(dashed in
the plot): it can be estimated direcly from the tight coupling expansion of the velocity
difference between baryons and photons relative to other perturbations like δργ

ρ̄γ

•
√
k3PB(k, η) ∝ k4 η

ηeq
→ Quadratic term in velocity and anisotropic stress vBΘ2 (dotted

in the plot): it can be estimated direcly from the tight coupling expansion of the source
Θ2(k, η)

Instead on small scales the behaviour of the power spectrum is more difficult to under-
stand, and with a linear reasonable approximation can be

√
k3PB(k, η) ∝

√
k. The largest

contribution to the magnetic field comes from the last period of generation, after recombina-
tion: the decoupling of photons and baryons enhance the departure from the tight-coupling
regime via non adiabatic pressure perturbations, which source the total vorticity3. This is
due mainly to the residual ionized fraction that is still non-zero after the recombination, even
if the counterbalancing effect of the redshifting background energy density of photons will
slow and then stop the generation of the magnetic field at later times [13].

Using a Gaussian window function WG(y) = 1
VG
e−

y2

2λ2 for a comoving scale λ, where

VG =
∫
d3ye−

y2

2λ2 = λ3(2π)
3
2 is the normalization volume, we can also obtain the magnetic

field amplitude

B2
λ =

1

VG

∫
d3y

〈
~B(~x) · ~B∗(~x+ ~y)

〉
e−

y2

2λ2 =
1

2π2

∫ +∞

0
k2PB(k)e−

k2λ2

2 (3.12)

The order of magnitude of the strength of the magnetic field is around 10−30 ÷ 10−29G, on
comoving scales of the order of 1÷ 10 Mpc (see figure 3), that is too low for the typical seed
magnetic field required by dynamo-like mechanism.

3The vorticity of the fluid of baryons and photons do not combine in a linear way

Figure 2: Dimensionless power spectrum of
the magnetic field, with global (solid line)
and single source contributions

Figure 3: Comoving magnetic field strength
at different redshift z = 1, 10, 100, 1000, rep-
resented by a solid, dashed, dotted and dot-
dashed lines respectively
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