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1 Introduction to the problem

1 Introduction to the problem

In high energy physics stable elementary particles are naturally associated with partic-
ular representations, irreducible representations of the universal cover of Poincaré group
P according to the groundbreaking paper of Wigner published in 1939( [1]). All particles
inside the Standard Model fall inside some of these representations, which are labelled by
the value of a continuous parameter called mass m and by the value of the spin s in the
massive case or by the value of the helicity h in the massless case. But the most general type
of massless particles allowed included the so-called infinite-spin representations which are
characterized by a dimensionful scale κ and reduce to familiar helicity particles only in the
limit κ 7→ 0. These particles are also called continuous spin particles (CSP). Two classes of
objections were raised in the literature against the existence of these particles, one related
to the difficulty of building CSPs covariant free quantum fields and the other concerning
the infinite number of degrees of freedom (related to a continuous parameter κ).

The first problem, at least in the axiomatic quantum field theory framework, was put
in a mathematical form by Yngvason in 1970 where it was clarified that the existence of
a pointlike quantum (free) field for infinite spin representations is in contradiction with
the local commutativity and the covariance transformation law axioms( [2]). At that time
there were also many attempts to canonically quantize fields that transform covariantly
under Poincaré transformations for the infinite-spin representation, using mostly (singu-
lar) CSP wavefunctions derived from Wigner’s equations. But all of them failed to obtain
a consistent free CSP theory, since they found obstructions to build properly causal fields
and/or local Hamiltonian( [3] [4] [5]). After the development of modular localization
concepts and the natural introduction of string-localized fields, it became clear that fields
localized in semi-infinite strings extending to space–like infinity can provide CSP quantum
fields that also satisfy all axioms in the axiomatic framework. In particular the main result
is the reconciliation of the infinite-spin representations with the principle of causality in a
QFT framework. The main work, with the explicit construction of string-localized fields
for CSPs, is summarized in the paper of Mund-Schroer-Yngvason published in 2004( [6]).
An interesting point is that string-localized fields can be used to describe both bosonic and
fermionic massive particles( [7] [8]) other than massless particles, and also they can be
built over pointlike fields via integration. This class of fields can also provide a reformula-
tion of some perturbative gauge theories, like QED, solving the old clash between Hilbert
space positivity and pointlike localization by substituting a massless gauge potential with a
string-localized potential.

More recently Schuster and Toro worked on these infinite-spin representations from a
different point of view, finding new equations (different from Wigner’s ones) for covariant
CSPs wavefunctions and trying to build up a consistent gauge theory for CSPs. Working in
one-particle quantum mechanical setting, they managed to identify new "smooth" solutions
in addition to the "singular" ones and they wrote a gauge theory action for bosonic (free)
CSPs using pointlike fields in a spacetime enlarged by an extra coordinate η ( [9] [10]).
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1 Introduction to the problem

The action likely has simple generalizations to describe fermionic and/or supersymmetric
CSPs, also in other spacetimes like (A)dS, and can also be extended to admit couplings
with suitable conserved background currents( [11] [12] [13]). The action is local, Lorentz
invariant, localized on the hyperbolic surface η2 = −1 and the fields show standard com-
mutation relations, but the canonical fields have non-trivial gauge variation and therefore
they are not directly observable as expected from the previous considerations( [11]). It
is also possible to find a local "gauge-fixed" Hamiltonian, but at the price of imposing a
spatially non-local gauge fixing condition( [10]).

For the second problem, the continuous spin particles contain indeed an infinite tower
of helicity-eigenstate with integer-spaced eigenvalues in the general case κ 6= 0. Therefore
if all CSPs states thermalized democratically and rapidly enough, it would lead to rapid su-
percooling of all thermal systems due to infinite heat capacity per unit volume. But luckily
along with particles of spin s ≤ 2, CSPs are the only massless states possessing covariant
soft factors, which opens the possibility that CSPs may mediate long-range forces. Indeed
for a candidate theory of interacting massless particles of higher helicities in a flat space-
time (higher-spin gravity) the two exotic properties of CSPs, namely the presence of infinite
degrees of freedom per spacetime point and the presence of a continuous mass scale κ > 0,
could be two positive features. A standard feature of higher-spin theories in dimension four
(and higher) is an infinite spectrum of helicities, and the spectrum of helicities in the CSPs
case coincides with the one in higher-spin gravity([35]). Secondly higher-spin vertices are
typically higher-derivative, and a dimensionful parameter for weighting them is a necessary
feature of any interacting theory. Therefore continuous spin gauge fields might be able to
circumvent the (Weinberg’s) no-go theorems preventing the existence of interacting parti-
cles of spin greater than two in flat spacetime and might provide a "subtle flat spacetime
analogue" of higher-spin gravity. Thanks to the hierarchical coupling structure in soft fac-
tors, also the second problem could be solved in real systems that are only approximately
in thermodynamic equilibrium and only for a finite time. If additional CSP states are suf-
ficiently weakly coupled, then the timescale for quasi-thermal systems to dissipate energy
into those states is long enough to be physically irrelevant. The problem can then be traced
to find a theory which produces such CSP covariant soft factors, as Schuster and Toro ex-
plained in their papers( [9]). We still don’t know yet if these type of particles exist, but the
interest on the topic has increased a lot over recent years due to new striking discoveries
we mentioned.

The scope of the thesis is to study the general form of free quantum fields for bosonic
CSPs, particularly focusing on the structure of the intertwiners (the coefficients of the an-
nihilation and creation operators in the mode expansion of the fields). I will first establish,
parametrizing directly the orbits of the little group for massless particles E(2), a new way
to find the "smooth" and "singular" solutions of Schuster and Toro papers. Then I will make
a deep connection between the general structure of Mund-Schroer-Yngvason intertwiners
with Schuster-Toro smooth wavefunctions via Gaussian integration. Moreover I will empha-
size the role of localization for infinite-spin intertwiners, considering both Mund-Schroer-
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Yngvason and Schuster and Toro’s works from different perspectives. The Mund-Schroer-
Yngvason bound ( [6]) regards the admissible class of infinite-spin intertwiners. We will
give an estimate about a special type of intertwiner, showing that it will fulfill the Mund-
Schroer-Yngvason bound if it is multiplied by a suitable factor. Finally I will discuss the
properties of the 2-point function using the general structure of infinite-spin intertwiners.
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2 Poincaré representations in Quantum Field Theory

2.1 The importance of the Poincaré symmetry

Spacetime plays a fundamental role in physics: it is not only the stage in which particle
interactions take place, but it also exhibits its own dynamics. The underlying symmetries
of spacetime are divided into two classes (the nomenclature is dictated by group theory),
namely discrete symmetries (charge conjugation C, parity inversion P and time reversal
T) and continuous symmetries (Poincaré symmetry, that comprised Lorentz symmetry and
translational symmetry).

Poincaré symmetry is a cornerstone of both of our current best theories of physics: Gen-
eral Relativity (GR) and Standard Model of particle physics (SM). In fact laws of physics in
the absence of gravity are Poincaré covariant, that is they are invariant in form both under
spacetime translations and under the action of the Lorentz group (Lorentz invariance is a
global symmetry of SM in a flat spacetime) [14]. Moreover in GR usually the formulation of
Einstein Equivalence Principle (SEP) includes local position invariance and local Lorentz in-
variance for all test experiments (including gravity). Regarding CPT symmetry that relates
a particle to its antiparticle, the SM is CPT-invariant by construction [15]. Considering the
broad field of applicability of these symmetries, searches for Poincaré symmetry breaking
or CPT-invariance breaking would provide a powerful test of fundamental physics (it could
be a signature of some quantum gravity effects).

In Quantum Field Theory (QFT), on which the whole SM rely, the well known CPT the-
orem ensures CPT symmetry if the theory satisfies some mild physical requirements: the
spectral condition (energy positivity), locality and relativistic covariance (Lorentz symme-
try) ( [16], [17] [18]). It can be proved that also CPT breaking implies Lorentz violation
under quite similar assumptions ("anti-CPT theorem" [19]), but the converse of this state-
ment is not true. Therefore Lorentz symmetry is intimately related to CPT symmetry. Now
let us suppose that translational symmetry is broken: then the energy-momentum tensor
Tµν , which is the generator of translations, is tipically no longer conserved. Then in general
the angular momentum tensor Mµν , defined as Mµν =

∫
d3x (T0µxν − T0νxµ), will show a

nontrivial dependence on time: with the exception of special cases, translation-symmetry
violation leads to Lorentz breakdown( [20]). This is the reason why a dedicated effec-
tive field theory has been developed in order to systematically consider all hypothetical
violations of the Lorentz invariance (LV) -and also general CPT violation-, that is called
Standard Model Extension (SME). Actually this is not a model, it is just a test framework.
The lagrangian is ( [21] [22] [23])

L = LEH + LSM + δLLV (2.1)

It contains the SM of particle physics (LSM), GR (Einstein-Hilbert lagrangian LEH) and
all possible Lorentz-violating terms (δLLV ) that can be constructed at the level of the La-
grangian, introducing a large number of new coefficients (multiplied by a Lorentz-violating
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2 Poincaré representations in Quantum Field Theory

operator in a coordinate-independent product) that can be constrained experimentally. Any
experimental signal for Lorentz violation can be expressed in terms of one or more of these
coefficients, and it is important to identify and analyze suitable experiments that can pro-
vide ultra-sensitive tests.

The most recent and complete review on the subject is "Data Tables for Lorentz and CPT
Violation" of Kostelecky and Russell( [24]). From all data they extracted four summary ta-
bles covering the sectors for matter (electrons, protons, neutrons, and their antiparticles),
photons, neutrinos, and gravity with the best estimates for the maximal attained sensi-
tivities to the relevant SME. The conclusion is that at the moment there is no confirmed
experimental evidence supporting Lorentz violation.

2.2 Symmetries in quantum field theory

In relativistic quantum mechanics, we are interested in the concept of Poincaré transfor-
mations acting on quantum mechanical states of the theory as symmetries, since the laws
of physics should be inertial frame invariant. A physical experiment should come up with
the same results regardless of where, when, or what orientation the experiment is done
in. The results of an experiment should also be invariant whether the experiment is done
at different uniform and constant velocities. When we combine several systems together,
the overall symmetry of the system should be related to the individual symmetries of its
components ( [25]). The most elementary systems are identified with the concept of "el-
ementary particles", although the definition of elementary particle is not entirely rigorous
as discussed later on. In the following we will study the relationship between elementary
particles and irreducible representations of the (double cover of) restricted Poincaré group,
building them step by step.

Let’s define a separable complex Hilbert space (H, 〈·, ·〉) with an inner product 〈·, ·〉 that
induces a norm ‖φ‖ := 〈φ, φ〉

1
2 and hence a topology. In quantum mechanics pure states

(physical states) are represented by rays ρ|φ〉 = {|ψ〉 ∈ H|∃λ ∈ C\{0} s.t. |ψ〉 = λ |φ〉}. If we
define the equivalence relation |φ〉 ∼ |ψ〉 ⇔ |φ〉 , |ψ〉 ∈ ρ|ψ〉 in H, then the proper "physical"
Hilbert space would be given by the quotient space P(H) := (H \ {0})/ ∼ (actually a
projective space of one dimensional linear subspaces of H).

Let’s recall that a unitary operator U on H is a C-linear bijective map U : H → H
leaving the inner product invariant: |ψ〉 , |φ〉 ∈ H ⇒ 〈ψ, φ〉 = 〈Uψ,Uφ〉. The composition
U ◦ V of two unitary operators U , V is always unitary and the inverse U−1 : H → H of
a unitary operator U : H → H is unitary as well. The composition of operators defines
the structure of a group on the set of all unitary operators on H, called U(H) (the unitary
group of H). Let π : H \ {0} → P(H) be the canonical map with respect to the equivalence
relation ∼ defined previously, that is ρ|ψ〉 := π(|ψ〉). We define the "transition probability"
Pr : P(H)→ P(H) as

Pr(ρ|ψ〉, ρ|φ〉) :=
|〈φ| ψ〉|2

‖φ‖2‖ψ‖2
(2.2)
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2 Poincaré representations in Quantum Field Theory

This map defines a topology on P(H) generated by the open subsets {ρ|ψ〉 ∈ P(H) :

Pr(ρ|ψ〉, ρ|φ〉) < r}, r ∈ R, ρ|φ〉 ∈ P(H). This is the quotient topology on P(H) with re-
spect to the quotient map π: a subset W ⊆ P(H) is open iff π−1(W ) ⊆ H is open in the
Hilbert space topology.

A Wigner symmetry (projective transformation) Σ is defined1 as an automorphism (bi-
jective map) on P(H) that preserves the transition probabilities2

Pr(ρ|ψ〉, ρ|φ〉) = Pr(Σ(ρ|ψ〉),Σ(ρ|φ〉))∀ |ψ〉 , |φ〉 ∈ H (2.3)

We define the group Aut(P(H)) of projective transformations to be the set of all projective
transformations where the group structure is again given by composition. For every U ∈
U(H) we define a map π̂(U) : P(H)→ P(H) by

π̂(U)(ρ|ψ〉) := π(U(|ψ〉)) ∀ ρ|ψ〉 = π(|ψ〉) ∈ P(H) (2.4)

Therefore π̂(U) ∈ Aut(P(H)), and the same can be done for every other antiunitary operator
V : H → H. It can be easily shown that π̂ : U(H)→ Aut(P(H)) is a group homomorphism.

Wigner’s theorem states that

Theorem 2.1 (Wigner). The symmetry Σ ∈ Aut(P(H)) is induced by an unitary or antiunitary
operator U : P(H)→ P(H) determined up to a phase factor, which satifies

Σ = π̂(U)⇔ Uρ = Σ(ρ) ∀ ρ ∈ P(H) (2.5)

We can define the group of unitary projective transformations U(P(H)) := π̂(U(H)) ⊆
Aut(P(H)), so that the sequence

1→ U(1)
ι−→ U(H)

π̂−→ U(P(H))→ 1 (2.6)

with ι(λ) = λ idH, λ ∈ U(1) defines an exact sequence of homomorphism and hence a
central extension of U(P(H)) by U(1).

From now on we will follow mainly the nice (and logical) presentation of the topic
written by Schottenloher in his conformal field theory’s book( [27]), with some remarks
taken from the quantum field theory’s book of Weinberg ( [28]) and the book on quantum
mechanics written by Moretti ( [26]).

Let us consider a topological group (G, ·, e) as a group of transformations of states acting
on a physical system described by an Hilbert space H, in such a way that every g ∈ G is
associated to a Wigner symmetry Σg. Then the notion of symmetry can be extended to a
group of symmetry operations, and we can suppose the map G 3 g 7→ Σg to be a group
homomorphism from G to Aut(P(H)) (projective representation of G):

Σg ◦ Σg′ = Σgg′ Σe = id Σg−1 = (Σg)
−1 (2.7)

1we are considering implicitly the case of a single sector of Hilbert space P(H), for the general case in which
P(H) splits coherently see [26]

2more general kind of symmetries are allowed in the quantum mechanics framework, such as Kadison
symmetries and Jordan-Segal automorphisms (see Moretti [26])
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2 Poincaré representations in Quantum Field Theory

where id is the identity automorphism.
This is the natural setting for the quantization of a classical phase space Y : we can

physically associate to each classical symmetry τ : G → Aut(Y ), where Aut(Y ) is a group
of transformations that leave invariant the physics of the classical system, a transformation
of the quantum phase space Tτ : G→ Aut(P(H)). Tτ has to respect the natural structures of
G and Aut(P(H)): since τ is required to be a group homomorphism, then Tτ should be also
a group homomorphism which respects the physics of the quantum system and so Tτ (g) :

P(H)→ P(H) has to preserve transition probabilities. If Tτ is injective, Tτ is called (faithful)
projective representation on P(H). If τ is continuous between the natural topologies of
G and Aut(Y), then we would require Tτ to be continuous also between the topologies
of G and Aut(P(H)). The topology on Aut(P(H)) is intended to be the strong operator
topology (which in this case corresponds to the topology of pointwise convergence), namely
W (Σ0, r) := {Σ ∈ Aut(P(H)) : Pr(Σ0(ρψ),Σ(ρψ)) < r} are the open neighborhoods of
Σ0 ∈ Aut(P(H)). In a similar manner we can construct the strong topology for U(H) and
U(P(H)), that are also connected and metrizable as topological spaces.

The important point is that in general the maps Σg : P(H) → P(H) are not linear, but
with the Wigner theorem we can associate to each Σg a unitary (linear) or an antiunitary
(antilinear) operator Ug, defined up to a phase, acting on the Hilbert space H. It is then
interesting to ask ourselves if the map G 3 g 7→ Ug could be a unitary (linear) or an an-
tiunitary (antilinear) representation of the group G on the Hilbert space H. Reformulating
the question, it is equivalent to ask if (for the unitary case) given T ′ : G→ U(P(H)), there
could be a lift S′ : G→ U(H) such that T ′ = π̂ ◦S. The general answer is no. The reason is
due to the fact that the property of composition Ug ◦Ug′ = Ugg′ ∀ g, g′ ∈ G can’t be satisfied,
since it holds only

Ug ◦ Ug′ = ω(g, g′)Ugg′ ∀ g, g′ ∈ G (2.8)

with ω(g, g′) ∈ C, |ω(g, g′)| = 1 ( ω(g, g′) ∈ U(1) ).
But it is possible to prove explicitly that every projective unitary representation of a

group G is the restriction of a unitary representation of a suitable central extension Ĝω

(see Appendix A). Hence, by knowing central extensions of G whose multipliers are not
equivalent and their unitary representations, we actually know the equivalence classes of
projective unitary representations of G, and so all projective unitary representations of G.

Let’s define the second cohomology group of the group G with coefficients in U(1) as

H2(G,U(1)) := {ω : G×G→ U(1) | ω is a 2-cocycle}/ ∼ (2.9)

where the equivalence relation ω ∼ ω′ holds iff there is a χ : G → U(1) with χ(g · g′) =

ω(g, g′)ω′(g, g′)−1 χ(g)χ(g′). We can notice that H2(G,U(1)) is an abelian group with the
multiplication induced by the pointwise multiplication of the maps ω, and that H2(G,U(1))

is in one-to-one correspondence with the equivalence classes of central extensions of G by
U(1).

As a final comment to this question, let’s consider the physical meaning of Ĝω when
there are no unitary representations of G, but only projective unitary representations. If
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2 Poincaré representations in Quantum Field Theory

we have a Wigner symmetry G 3 g 7→ Σg for our physical system with an Hilbert space
(of states) H, hence a projective representation on P(H) that is not describable by means
of a unitary representation. We can take the central extension from G to Ĝω using the
multipliers found, and then choose Ĝω as the true symmetry group of our physical system,
since the group action on the states of the system Ĝω 3 (χ, g) 7→ χUg is unitary. A specific
central extension Ĝω can be selected only by giving a physical meaning to the unitary
representation of Ĝω: this can be done if G turns into a Lie group.

Let’s assume that G is a Lie group from now on. If G is also connected, for any projec-
tive representation G 3 g 7→ Σg the images Σg can be associated to unitary operators only,
according to Wigner’s theorem. We assume then also that the projective unitary represen-
tation G 3 g 7→ Ug is continuous, and in general we can choose the phases (multipliers) so
that the representation G 3 g 7→ Ug is strongly continuous3, but only around the identity
e ∈ G. Anyway, there exist in our hypothesis a central extension Ĝω and a strongly contin-
uous unitary representation Ĝω 3 (χ, g) 7→ V(χ,g) with ω(e, e) = 1, V(χ,e) = χ 1 ∀χ ∈ U(1).

Moreover Ĝω is a connected Lie group; the canonical inclusion ι : U(1) → Ĝω and
the canonical projection pr2 : Ĝω → G are Lie group homomorphisms. Also Ĝω as a
differentiable manifold is, around the identity, the local product of U(1) and G and the
map (1, g) 7→ V(1,g) is a strongly continuous projective unitary representation that induces
G 3 g 7→ Σg: Σg(ρ) = V(1,g)ρV

−1
(1,g) ∀ g ∈ G, ρ ∈ P(H).

At this point, we need only another result before Bargmann’s theorem. IfG is not simply
connected, we can equivalently consider the continuous unitary projective representations
of the universal covering group G̃ ofG (π : G̃→ G) in place of those ofG. Infact continuous
projective representation Σ : G 3 g 7→ Σg of G on the Hilbert space H arises from the
continuous projective representation Σ̃ : G̃ 3 g 7→ Σg on H such that ker(π) ⊂ ker(Σ ◦ π),
induced by G ' G̃/ ker(π). This is due to the fact that since π : G̃ → G is a continuous
homomorphism of topological groups and Σ : G 3 g 7→ Σg is a continuous projective G-
representation, then Σ◦π : G̃ 3 h 7→ (Σ◦π)(h) is a continuous projective G̃-representation.

We have finally the following important

Theorem 2.2 (Bargmann). Let G be a connected and simply connected finite dimensional Lie
group with H2(g,R) = 0, where g is the Lie algebra of G. Then every continuous projective
G-representation on the Hilbert space H is induced by a strongly continuous unitary repre-
sentation on H: every continuous projective representation T : G → U(P(H)) has a lift as a
strongly unitary representation S : G→ U(H) where T = π̂ ◦ S.

Bargmann’s theorem holds for simply connected Lie groups G whose Lie algebra is
simple or semisimple. Physically important cases are SL(2,C) (the universal covering of
the Lorentz group) and the universal covering of the Poincaré group, since the Lie algebras
of those groups are semisimple. Therefore, dealing with relativistic quantum theories4 one
can always take advantage of Bargmann’s theorem dealing with spacetime symmetries.

3the map g 7→ Ug is strongly continuous if Ugρ|ψ〉 → Ug0ρ|ψ〉 as g → g0 for each ρ|ψ〉 ∈ P(H)
4Conversely, for example, the treatment of spacetime symmetries in Galilean quantum mechanics is much

more complicated
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2 Poincaré representations in Quantum Field Theory

2.3 Poincaré group and relativistic wave equations

The Poincaré group arises in different contexts, as a manifestation of spacetime symme-
tries. The spacetime is usually conceived as a 4-dimensional differential manifoldM5, with
events labelled by coordinates xµ = (x0, x1, x2, x3) (Minkowskian coordinates dependent
on the reference system of the observer, see [29]). The spacetime interval between two
events x, y ∈ M is defined as (x − y)2 := (x − y)µηµν (x − y)ν: it is said to be time-like,
light-like or spacelike if respectively (x− y)2 > 0, (x− y)2 = 06 or (x− y)2 < 0.

Poincaré group arises as full symmetry group of Minkowski flat space (pseudo-Riemannian
manifold) (M, η) := (R4, η), with η =diag(1,−1,−1,−1) non degenerate bilinear symmet-
ric form on R4. The metric has signature (1, 3), so (M, η) is a Lorentzian manifold. Each
tangent vector space of a 4-dimensional Lorentzian manifold is isomorphic to Minkowski
space-time, hence the automorphism group (group of diffeomorphic isometries of (M, η))
of such a tangent vector space TxM is the semi-direct product P := R1,3 o O(1, 3), the
largest possible local symmetry group of the spacetime.

The Poincaré group arises also from another point of view, namely the space of solutions
of a relativistic equation (see [30]). We want to find what field equations are compatible
with the given transformation law for the Poincaré group. In general, a phase space can be
thought of as the space of initial conditions for an equation of motion. In a non relativistic
field theory, the equation of motion is the first order in time Schrödinger equation, and
the phase space is the space of fields (wavefunctions) at a specified initial time, say at
t = 0. This space carries a representation of the time-translation group R and the Euclidean
group E(3) := R3 o SO(3). To construct a relativistic quantum field theory, we want to
find an analog of this space of wavefunctions, that will be some sort of linear space of
functions satisfying a specific equation of motion (and that we can then quantize later
by applying "harmonic oscillator" methods). The space of solutions of this equation of
motion provides a representation of the group of spacetime symmetries of the theory, that
is Poincaré group. To construct representations of P, we begin to define an action of P on
n-component wavefunctions ψ(x) by

ψ(x) 7→ U(Λ, a)ψ(x) = S(Λ)ψ(Λ−1(x− a)) (2.10)

where S is a suitable matrix. This is the action one gets by identifying n-component wave-
functions with functions onM⊗Cn and using the induced action on functions for the first
factor in the tensor product, on the second factor taking S(Λ) to be an n-dimensional repre-
sentation of the Lorentz group. One then chooses a differential operator D on n-component
wavefunctions that commutes with the group action, so that

U(Λ, a)DU(Λ, a)−1 = D (2.11)

5we will not consider quantum gravity’s theories in the following, according to which the spacetime can be
composed of discrete pieces at sufficiently short scales

6if two events are light-like separated, they are connected with a light signal of speed c. This is due to the
postulate of costancy of the speed of light in special relativity.
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2 Poincaré representations in Quantum Field Theory

Thefore the U(Λ, a) give a representation of P on the space of solutions to the wave equa-
tion Dψ = cψ with constant c. If the space of solutions is not irreducible an additional
set of "subsidiary conditions" can be used to pick out a subspace of solutions on which the
representation is irreducible.

In the same manner, if the wavefunction |ψ〉 refer to a free particle and satisfy some
relativistic wave equations, there exist a correspondence between the wavefunctions de-
scribing the same state in different Lorentz frames. We choose to work in the Heisenberg
representation. Let |ψ〉 and |ψ′〉 be the wave functions of the same state in two Lorentz
frames L and L′. Then |ψ′〉 = U(Λ, a) |ψ〉 where U(Λ, a) is a linear unitary operator. Thus a
vector space contains, together with |ψ〉, all transforms U(Λ, a) |ψ〉, where (Λ, a) is any ele-
ment of the Poincaré group. A classification of all unitary representations of Poincaré group
amounts to a classification of all possible relativistic wave equations. Two representations
U and V U V −1 are equivalent if V is a fixed unitary operator. If the system is described by
wavefunctions |ψ〉, the description by ∣∣ψ′〉 = V |ψ〉 (2.12)

is isomorphic with respect to linear superposition, with respect to forming the inner prod-
uct of two wave functions, and also with respect to the transition from one Lorentz frame
to another. They belong to the same class of equivalent wave equations. The present dis-
cussion is not based on any hypothesis about the structure of the wave equations provided
that they are covariant. In particular, it is not necessary to assume differential equations
in configuration space (as we did previously). But it is a result of the group-theoretical
analysis that every irreducible wave equation is equivalent, in the sense of the equation, to
a system of differential equations for fields on Minkowski spacetime( [31]).

It turns out that the Poincaré group, to perform transformations between any inertial
frames of reference, implements the relativity principle7. In quantum mechanics the iner-
tial frame of reference is connected with the totality of macroscopic devices (laboratory),
necessary for the complete description of elementary particles system under study. The
devices participate in the quantum mechanics description twice: at first, by means of some
device a quantum object state is prepared and then measurements of objects are performed
with another device.

To the Poincaré group of transformations may be assigned a double meaning. On the
one hand, it can describe a change of spacetime location of a physical system during two
measurements in the same inertial frame of reference, that is: difference in location of two
identical physical systems with respect to the given inertial frame of reference (active view-
point). On the other hand, this transformation can characterize the difference between two
inertial reference frames, in which one and the same system is being studied (passive view-
point). We will use the active interpretation of the Poincare group transformation( [32]).

The Poincaré transformations x′µ = Λµνxν + aµ with an element of the Poincaré group
g = (a,Λ) leave the spacetime interval (y−x)2 between two events x, y ∈M invariant. The

7which can be stated in the form "All systems of reference are equivalent with respect to the formulation of
the fundamental laws of physics"

11



2 Poincaré representations in Quantum Field Theory

multiplication law in the Poincaré group is (a2,Λ2) · (a1,Λ1) = (Λ2a1 + a2,Λ2Λ1). Under
the active interpretation of the Poincaré transformation, every initial physical state Ψ(in) is
compared with a transformed state Ψ

(in)
g , which differs from the initial state by arrangement

of preparing devices. The state Ψg is related to a facility with preparing devices which
has been shifted, turned or is evenly moving with respect to the previous position. In
the same way, every state Ψ(f), registered by measuring devices, can be compared with
a transformed state Ψ

(f)
g . To find the probability of a transition Ψ

(in)
g → Ψ

(f)
g , which we

denote by Rig → Rfg , we must repeat the experiment Ψ(in) → Ψ(out) (with an identical
physical system) in which all the preparing and and measuring devices must be transformed
with respect to the initial state according to the geometrical sense of g. The existence of
the Poincaré spacetime symmetry exhibits in the equality

Rig → Rfg = Ri → Rf (2.13)

This is the reason why we can define the Wigner symmetries for the Poincaré group, and
the whole apparatus we built in the last chapter can then be used.

The main properties of the Poincaré group are listed in the appendix B, to which the in-
terested reader are referred to. The Lie algebra associated to Poincaré group is the Poincaré
algebra iso(3, 1), presented by the generators {Pµ,Mνρ} and by the commutation relations

−i[Mµν ,Mρσ] = ηνρMµσ + ηνσMµρ − ηµρMρν − ηµσMνρ (2.14)

−i[Pµ,Mρσ] = ηµρPσ − ηµσPρ (2.15)

−i[Pµ, Pν ] = 0 (2.16)

There are two notable subalgebras of the Poincaré algebra, namely the abelian Lie algebra
of the translation group R4 presented by the generators {Pµ} and by the commutation
relations (2.16) and the (non abelian) Lorentz algebra so(3, 1) presented by the generators
{Mνρ} and by the commutations relations (2.14). It is easy to see that (2.15) implies that
R4 is an ideal of the Poincaré algebra, so that the Poincaré algebra is the semidirect sum
iso(3, 1) = R4 ] so(3, 1).

The Casimir elements of a Lie algebra g are homogeneous polynomials in the gener-
ators of g, and for a finite dimensional Lie algebra they form a distinguished basis of
the center of the universal enveloping algebra Z(U(g)). Regarding the Lorentz algebra,
there are two quadratic Casimir invariants C2(so(3, 1)) = −1

2M
µνMµν and C′2(so(3, 1)) =

−1
2ε
µνρσMµνMρσ by Racah’s theorem since the algebra is semisimple (and also simple in

this case) and has rank8 2. Poincaré algebra has rank 2, and therefore it has 2 independent
Casimir invariants:

C2(iso(3, 1)) = PµPµ (2.17)

C4(iso(3, 1)) = WµWµ (2.18)

where Wµ := 1
2ε
µνρσMνρPσ is called Pauli-Lubanski vector.

8defined as the dimension of its maximal Cartan subalgebra
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2 Poincaré representations in Quantum Field Theory

Let’s recap some basic notions about helicity and spin. Given the 3-vector of rotation
generators for the Lorentz group J i = 1

2ε
ijkMjk and the massless particle’s 3-momentum

pi, the (non-covariant) definition of the helicity h is

~J · ~p
|~p|
|ψh〉 = h |ψh〉 (2.19)

where |ψh〉 is an helicity eigenstate. On the other hand in the case of massive particles at
rest, the definition of the spin value s relies on the relationship

J2 |ψs〉 = −W
2

m2
|ψs〉 = s(s+ 1) |ψs〉 (2.20)

where |ψs〉 is a spin eigenstate.

2.4 Classification of irreducible representation of Poincaré group

The Poincaré group is not semisimple and moreover is not compact nor connected.
For finite-dimensional representations, the non-semisimplicity means that we cannot use
Weyl’s theorem on complete reducibility which ensures the fact that all representations are
built from the irreducible ones (unlike the Lorentz group case, for example). The lack of
connectedness means that time reversal and space inversion has to dealt with separatly for
representations of the full group, so in the following we will consider just the restricted
Poincaré group. So the representations of the Poincaré group do not follow from a general
framework of representation theory.

The representation theory of semi-direct products of the typeNoK, whereN andK are
topological groups, will in general be rather complicated. However when N is commutative
we can define the set of character of N , called N̂ , that is the set of functions α : N → C
that satisfy the homomorphism property α(n1n2) = α(n1)α(n2) (therefore N̂ is a group).
Since N is a Lie group, we can focus on the character that are differentiable functions on
N , and in the particular case N = R4 the differentiable irreducible representations are one
dimensional and given by αp(x) = eip·x with x ∈ N . The character group is thus N̂ = R4,
with elements labelled by the vector p. From the structure of the semi-direct product we
have an automorphism Φk of N for each k ∈ K, such that Φk : n ∈ N 7→ Φk(n) ∈ N and
the semi-direct product N oK is defined as the set of pairs (n, k) ∈ N ×K with group law

(n1, k1) · (n2, k2) = (n1Φk1(n2), k1k2) (2.21)

Therefore from this action we get an induced action on N̂ given by Φ̂k : N̂ 3 α→ Φ̂k(α) ∈
N̂ , with Φ̂k(α)(n) = α(Φ−1

k (n)). Let’s consider representations (π, V ) on a space V of
N o K: one can focus on the N action, decomposing V into subspaces Vα where N acts
according to the index α (v ∈ Vα ⇔ π(n, 1)v = α(n)v). Acting by K on the element v ∈ Vα
will take it to π(0, k)v ∈ VΦ̂k(α), as could be easily proved. Therefore for each α ∈ N̂ one
can look at its orbit under the action of K by Φ̂k, which will give a subset Oα ⊆ N̂ . The
little group (or stabilizer group) is the subgroup Kα ⊆ K of elements k ∈ K such that
Φ̂k(α) = α for any given α ∈ N̂ . Now the action of π on V is completely characterized in
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2 Poincaré representations in Quantum Field Theory

terms of the K-orbits Oα for α ∈ N̂ and an irreducible representation of the little group
Kα.

Regarding the physical Poincaré group P↑+ it is clear that N̂ = R4 is the space of char-
acters of the translation group of Minkowski space and each element α is labelled by pµ,
that are the eigenvalues of the 4-momentum operator Pµ9. It follows that the space-time
dependence of the wavefunctions is of the form eipµx

µ
. The irreducible representations are

then characterized by the values of the scalar P 2, and the by the values of the other scalar
W 2 or by the representation of the little group Kp on the eigenspace of the momentum
operators with eigenvalue p. We know that the action of the Lorentz group on the momen-
tum space R4 is p 7→ Λp and therefore we can classify representations by orbits, restricting
ourselves (for simplicity) to the (p0, p3) plane. For each orbit, we will choose a reference
momentum pref. It can be easily seen that there are 6 types of orbits: ( [30], [33])

Figure 2.1: The classification of orbits of the Lorentz group action in the momentum space (taken
from [30])

• Positive energy time-like orbits (P 2 = m2 > 0, pref = (m, 0, 0, 0)): this is the upper
positive energy sheet O(m,0,0,0) of the massive hyperboloid p2 = m2, where the lit-
tle group of K(m,0,0,0) is a subgroup of SO↑(1, 3) isomorphic to SO(3). Irreducible
representations of this group are classified by the spin s as we can see also from the
values of the scalar W 2 = −m2J2 = −m2s(s+1), where J2 is the Casimir operator of

9from the equation (2.16) we can see that all the translation generators commute with each other
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2 Poincaré representations in Quantum Field Theory

the subgroup of spatial rotations. Only integer values of the spin are allowed in this
case, whereas for the the representations of the double cover of the Poincaré group
also half-integer values are allowed. Functions on the hyperboloid both correspond
to the space of all (positive energy) solutions to an appropriate wave equation (Klein-
Gordon equation for spin 0, massive Dirac equation for spin 1

2 , ...) and also carry an
irreducible representation of the Poincaré group.

• Negative energy time-like orbits (P 2 = m2 > 0, pref = (−m, 0, 0, 0)): this is the
lower negative energy sheet O(−m,0,0,0) of the massive hyperboloid p2 = m2, where
the little group of K(−m,0,0,0) is again a subgroup of SO↑(1, 3) isomorphic to SO(3).
Irreducible representations of this group are classified again by the spin s (W 2 =

−m2J2 = −m2s(s + 1)), and functions on the hyperboloid both correspond to the
space of all (negative energy) solutions to an appropriate wave equation and also
carry an irreducible representation of the Poincaré group like the previous case.

• Space-like orbits (P 2 = −m2 < 0, pref = (0, 0, 0,m)): this is a one sheet hyper-
boloid O(0,0,0,m) where p2 = −m2, where the little group of K(0,0,0,m) is isomorphic to
SO↑(2, 1) ' SL(2,R). There is no finite dimensional unitary representations of the
Poincaré group because SL(2,R) is simple and not compact.

• Positive energy null orbits (P 2 = 0, pref = (|~p|, 0, 0, |~p|)): this is the upper half
O(|~p|,0,0,|~p|) of the full null cone p2 = 0, where the little group of K(|~p|,0,0,|~p|) is iso-
morphic to E(2), the Euclidean group of the plane. We can distinguish two main
classes of irreducible representations: the ones in which the translation subgroup of
E(2) acts trivially and the ones in which it doesn’t. The first class is related to the
one dimensional irreducible representations of SO(2) group, labelled by an integer
h called helicity (that will become an half-integer when we will consider the double
cover of the Poincaré group), whereas the second one are in correspondence with
the infinite dimensional irreducible representation on a space of functions on a cir-
cle of radius ρ. In the first case W 2 = 0 and the eigenvalue of J3 on the space of
energy-momentum vectors pref is h and different values of h bring to different wave
equations (Klein-Gordon equation for massless scalars with h = 0, Weyl equation for
Weyl spinors with h = ±1

2 , Maxwell equations for Photons with h = ±1,...). In the
second case W 2 = −ρ2, where ρ has the dimension of a mass, and the representations
are called infinite spin (or continuous spin) representations.

• Negative energy null orbits (P 2 = 0, pref = (−|~p|, 0, 0, |~p|)): this is the bottom half
O(−|~p|,0,0,|~p|) of the full null cone p2 = 0, where the little group of K(−|~p|,0,0,|~p|) is
isomorphic again to E(2). The classification is completely analogous to the previous
case.

• Zero orbit (P 2 = 0, pref = (0, 0, 0, 0)): this is a single point orbit O(0,0,0,0) and the
stabilizer group K(0,0,0,0) is the whole Lorentz group SO↑(1, 3). Of course W 2 = 0,
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and moreover for each finite dimensional representation of the Lorentz group one
gets a corresponding representation of the Poincaré group, but not a unitary one.

Let’s recap some definitions about the four-vectors vµ on a Lorentzian manifoldM. The
vector vµ is said to be timelike, spacelike or lightlike if v · v > 0, v · v < 0 or v · v = 0. Since
the tangent space TxM at an arbitrary point x of a Lorentzian manifold is isomorphic to a
Minkowski spaceM, then the (dual) cotangent space T ∗xM ' R3,1 can be regarded as the
Minkowski energy-momentum space. Let us introduce an indefinite metric on T ∗xM given
by 〈p, p〉 := p2

0 − |~p|2. We can thus define some important structures:

• Forward mass hyperboloid H+
m := {p ∈M : 〈p, p〉 = m2, p0 > 0}

• Backward mass hyperboloid H−m := {p ∈M : 〈p, p〉 = m2, p0 < 0}

• Forward light cone ∂V + := {p ∈M : 〈p, p〉 = 0, p0 > 0}

• Backward light cone ∂V − := {p ∈M : 〈p, p〉 = 0, p0 < 0}

Accordingly, in the following table we summarize the extension of our previous result for
the unitary irreducible representations of P+, grouping together positive and negative en-
ergy orbits ( [31]):

Table 2.1: Classification of unitary irreducible representations of P+

Spectrum of p Orbit Stability subgroup UIR10

〈p, p〉 = m2 > 0
Mass (timelike)

hyperboloid H+
m ∪H−m

SO(3) Massive

〈p, p〉 = −m2 < 0
Spacelike

hyperboloid
SO↑(2, 1) Tachyonic

〈p, p〉 = 0 Light cone ∂V + ∪ ∂V − E(2) Massless

pµ = 0 Origin SO↑(3, 1) Zero-momentum

where we can notice that the hypersurfaces of constant momentum square 〈p, p〉 are quadric
of curvature radius m > 0.

This concludes a generic discussion about the (unitary) irreducible representations of
the restricted Poincaré group P↑+, that as we already mentioned permit to classify the uni-
tary action (ψ(x) → U(Λ, a)ψ(x) = S(Λ)ψ(Λ−1(x − a))) on n-component wavefunctions
(solutions of some wave equation). However in relativistic particle physics we actually need
the unitary irreducible representations of the double cover of the physical Poincaré group

P̃↑+ := R4 o SL(2,C) in order to classify relativistic one-particle states.

2.5 The method of induced representations

Let’s consider a relativistic state vector |Ψ〉 ∈ H1 (where H1 is the one-particle physical
Hilbert space) on which the Poincaré group acts like

|Ψ〉 7→ U(Λ, a) |Ψ〉 (2.22)
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We notice from the equation (2.16) that the components of the energy-momentum vector
all commute with each other. Therefore it is natural to label physical states |Ψ〉 in terms
of eigenvectors of the translation generators Pµ, introducing a label σ to denote all other
degrees of freedom. We take as part of the definition of one-particle state that the label σ
is purely discrete 11, so that

Pµ |Ψ(p, σ)〉 = pµ |Ψ(p, σ)〉 (2.23)

Since the unitary operator for infinitesimal transformations of the Poincaré group

U(ε, 1 + ω) = 1 +
1

2
iωρσM

ρσ − εαPα (2.24)

where ωρσ and εα are infinitesimal parameters, then for finite translations U(a, 1) |Ψ(p, σ)〉 =

e−ipµa
µ |Ψ(p, σ)〉. To see the effect of an homogeneous Lorentz transformation Λµν on a

state |Ψ(p, σ)〉, we apply the energy-momentum operator Pµ to the expression U(0,Λ) |Ψ(p, σ)〉:

PµU(0,Λ) |Ψ(p, σ)〉 =U(0,Λ)U−1(0,Λ)PµU(0,Λ) |Ψ(p, σ)〉 (2.25)

=U(0,Λ)(Λ−1 µ
ρ P

ρ) |Ψ(p, σ)〉 = Λµρp
ρU(0,Λ) |Ψ(p, σ)〉

where we used the equation (2.15) and the fact that Λ−1 µ
ρ = Λµρ. Therefore U(0,Λ) |Ψ(p, σ)〉

is an eigenvector of the energy-momentum operator Pµ with the eigenvalue Λp and it must
be a linear combination of the form

U(0,Λ) |Ψ(p, σ)〉 =
∑
σ′

Cσ′σ(Λ, p)
∣∣Ψ(Λp, σ′)

〉
(2.26)

where he transformation matrix Cσ′σ(Λ, p) should be unitary with respect to the norm〈
Ψ(p, σ)

∣∣ Ψ(p′, σ′)
〉

= 2p0δ
3(~p− ~p′)δσσ′ (2.27)

In general it is possible to choose the σ labels in such a way that each |Ψ(p, σ)〉 within
the σ-block furnish an unitary representation of the Poincaré group, that is each Cσ′σ(Λ, p)

is block-diagonal. It is quite natural to identify the components of an irreducible unitary
representation of the Poincaré group with the states of a specific particle type12, since
it cannot be further decomposed in this way. Thus all the states |Ψ(p, σ)〉 in an unitary
irreducible representation of the Poincaré group have momenta p belonging to the orbit of
a single reference momentum pref. The classification of all orbits for different pref under the
action of the Lorentz group follows directly from the table 2.1 (and also from the detailed
list before, if we consider separatly the values of p2

ref and p0
ref). Moreover one can define the

|Ψ(p, σ)〉 of momentum pµ by

|Ψ(p, σ)〉 = N(p)U(Bp) |Ψ(pref, σ)〉 (2.28)

11in the general case for many unbound particles the label σ has to include also continuous labels
12with some exceptions
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where Bp is a standard boost such that p = Bppref for each momentum of the orbit of
reference momentum pref and N(p) is just a normalization factor. Considering an arbitrary
Lorentz transformation one finds

U(0,Λ) |Ψ(p, σ)〉 = N(p)U(ΛBp) |Ψ(pref, σ)〉 = (2.29)

= N(p)U(BΛp)U(B−1
ΛpΛBp) |Ψ(pref, σ)〉 (2.30)

We see that W (Λ, p) := B−1
ΛpΛBp takes pref to Bppref = p, then to Λp and finally back to

pref, so it belongs to the stabilizer (little group) Stabp ⊆ L↑+ corresponding to the reference
momentum pref. For any W,W ∈ Stabp one has

U(W ) |Ψ(pref, σ)〉 =
∑
σ′

dσ′σ(W )
∣∣Ψ(pref, σ

′)
〉

(2.31)

and dσ′σ =
∑

σ′′ dσ′σ′′(W )dσ′′σ(W ): the coefficients d(W ) furnish a representation of the
little group. Therefore

U(0,Λ) |Ψ(p, σ)〉 = N(p)
∑
σ′

dσ′σ(W (Λ, p))U(BΛp)
∣∣Ψ(pref, σ

′)
〉

= (2.32)

=
N(p)

N(Λp)

∑
σ′

dσ′σ(W (Λ, p))
∣∣Ψ(Λp, σ′)

〉
Finally the problem of determining the coefficients Cσ′σ has been reduced to the problem of
finding the coefficients dσ′σ. This is the physical picture that lies behind Mackey’s machin-
ery13 and that allows us to consider just the stabilizer (Little group) Stabp and the possible
orbits for our reference vectors in order to classify all unitary irreducible representations of
the Poincaré group.

The mathematical formulation of the method of the induced representations is called
Mackey’s machinery. The line of reasoning is quite similar to the one we took previ-
ously, and the strategy will turn out to be particularly useful in order to characterize com-

pletely relativistic one-particle states. Since P̃↑+ is a locally compact group, we denote by

Ind
H↑P̃↑+

UH the unitary representation of P̃↑+ induced by UH , where H is a closed (normal)

subgroup of P̃↑+ and UH is a unitary representation of H. The translation group R4 is a

normal subgroup of P̃↑+, and so it is useful to consider the stabilizer Stabp of the character p

(dual group of the translations) for the (adjoint) action of P̃↑+. It is clear that this is related
to the stabilizer (Little group) Stabp for the action of L↑+ := SO↑(1, 3) acting naturally on
R4 via p 7→ Λp via Stabp = Stabp oR4, since the translation group acts trivially on itself.

Then the Mackey’s therem states that given an irreducible unitary representation U of

P̃↑+, this is induced U = Ind
Stabp↑P̃↑+

UStabp from an irreducible unitary representation UStabp

of Stabp ( [34]). Therefore we have reduced the problem to considering only the unitary
representations of the form UStabp , with Stabp = Stabp oR4. The following relation holds

UStabp(g, x) = d(g)p(x) g ∈ Stabp, x ∈ R4 (2.33)

13see the following paragraph
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where d is an irreducible representation of Stabp and p is the character of R4.

We will focus on positive energy, massless unitary representations of P̃↑+ from now on
and thus we choose the reference vector for the boundary of the forward light cone ∂V +

as pµref = (1, 0, 0, 1). From the table 2.1 we recognize that the stabilizer (Little group) for
the action of the Lorentz group L↑+ is isomorphic to the two-dimensional Euclidean group

E(2), but since in this case we deal with the the double cover of the Lorentz group L̃↑+
then Stabp = Ẽ(2) = ˜R2 oO(2) = R2 o T, where T is the double cover of S1. Ẽ(2) is a
3-dimensional non-compact Lie group, with 2 degrees of freedom related to translational
symmetries and 1 degree of freedom to rotational symmetry. We can parametrize this Little
group Ẽ(2) as

Stabp = Ẽ(2) =

{[
eiθ a1 + ia2

0 e−iθ

]
|a1, a2 ∈ R, θ ∈ [0, 2π[

}
(2.34)

Since Ẽ(2) = R2 o T, the unitary irreducible representation d of Ẽ(2) fits into one of the
following two classes, as we will explain later in more detail:

• the restriction of d to R2 is trivial: considering the dual of T, in this case UIR are
labelled by integers h ∈ Z or half-integers h ∈ Z

2 ;

• the restriction of d to R2 is non-trivial: in this case UIR are labelled by the Pauli-
Lubanski parameter κ > 0, that is related to the square of the Pauli-Lubanski vector
Wµ since W 2 = −κ2 (instead in the massive case W 2 = −m2s(s+1), with P 2 = m2).

To the first class belongs all massless particles of finite helicity like photons, whereas
the second class corresponds to infinite (continuous) spin particles. In particular in four
dimensions there exist only two infinite spin representations: the single-valued (bosonic)
and the double-valued (fermionic) ones, which contains a countably infinite tower of all
integer or half-integer helicity degrees of freedom respectively. It is worth mentioning
that here we are considering helicity as the eigenvalue of the helicity operator defined
in the equation (2.19). Indeed given an energy E, the ratio κ

E controls the mixing of
adiacent helicity states under Lorentz boosts (in analogy for massive particles the ratio√
−W 2

E controls the mixing of adiacent spin states, since W 2 = −m2s(s + 1)), and only in
the limit κ→ 0 helicity becomes a boost-invariant quantum number( [9]). The continuous
-and unconstrained- parameter κ > 0 is dimensionful (a kind of euclidean mass) and so the
conformal invariance holds only for the first class of UIR, where κ = 0. This is the origin of
the unfortunate terminology "continuous spin" particles (CSPs), even if the "spin" of these
particles are by no means continuous (in contrast with anyons in 2+1 dimensions). On the
other hand, the (discrete) helicities in the spectrum of these CSPs -for both bosonic and
fermionic cases- are unbounded. Since one definition of the “spin” is as the bound on the
(absolute value of the) helicity eigenvalues, this fact gives rise to the terminology "infinite
spin" historically14. All these properties will be discussed with more details in the next

14this will become clearer when we will consider the so-called infinite-spin limit

19



2 Poincaré representations in Quantum Field Theory

chapter, after the development of all the mathematical formalism required for the explicit
description of such type of representations.

In order to understand better the structure of Ẽ(2) and the implications for the infinite
spin representation, let’s define the so-called light-cone coordinates. The reference lightlike
momentum points along the third spatial direction, so it is useful to define

x± = x0 ± x3 x′1 = x1 x′2 = x2 (2.35)

where the Minkowski metric reads η++ = η−− = 0, η+− = η−+ = 2 and ηij = −δij for
i, j ∈ {1, 2}. In this reference frame the reference vector becomes pref = (p+, 0, 0, 0) =

(2|~p|, 0, 0, 0) and the (transversal part of) Poincaré algebra adapted to these coordinates,
given by the generators Mij and πi := pµrefMµi = p+

refM+i, can be written as

−i[Mij ,Mrs] = ηjrMis + ηjsMir − ηirMrj − ηisMjr = 0 (2.36)

−i[πi,Mrs] = δirπs − δisπr (2.37)

−i[πi, πj ] = 0 (2.38)

It is worth noticing that the generators {Mij , πi} span the Lie algebra of the two-dimensional
Euclidean group and that the quadratic Casimir of the Euclidean algebra iso(2) is the square
of the translation generators (joint spectrum)

C2(iso(2)) = πiπi = WµWµ

∣∣
P=pref

(2.39)

where we used the fact that (for m = 0)

WµWµ = −1

2
P 2MµνM

µν +MµρP
ρMµσPσ = MµρP

ρMµσPσ (2.40)

The method of induced representation can be applied also to the classification of the
UIR of the (double cover of) two-dimensional Euclidean group E(2) ( [31]). Considering
the one particle states |Ψ(p, σ)〉 labelled by the (fixed) reference momentum pµ and the
other physical degrees of freedom σ, we can express |Ψ(p, σ)〉 in terms of the eigenvectors
ξi of the translation generators πi since the equation (2.38) holds. Introducing a new label
ζ to denote all remaining physical components, one thus considers states |Ψ(p, ξ, ζ)〉 such
that

πi |Ψ(p, ξ, ζ)〉 = ξi |Ψ(p, ξ, ζ)〉 (2.41)

Repeating the previous arguments, all UIR of the massless little group Ẽ(2) has been re-
duced to the problem of finding all UIR of the stability subgroup of the two-dimensional
vector ξ, called short little group and isomorphic to SO(2). According to the value of ξ2,
the non-trivial representation of the (short) little group are divided into two categories: the
helicity representation and the continuous spin representation. The first one corresponds
to ξi = 0 (the action of the translation operators πi is trivial) whereas the second one corre-
spons to ξ2 = κ2 ⇔ ξi ∈ S1 ⊆ R2 (the action of the translation operators πi is non-trivial).
In the last case the non trivial orbitsOκ := {ξ ∈ R2|ξ2 = κ2} are infact circles in R2 of radius
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κ. Since we are dealing with first-quantized elementary particle, the number of physical
components is given by the Hilbert space carrying the UIR of the little group: in the infinite
spin case the little group is non-compact, so we have an infinite number of components. In
fact the most exotic property of CSPs is the presence of an infinite number of degrees of
freedom per spacetime point.

Figure 2.2: UIR of the Poincaré group can be (almost) completely characterized by the Casimir
invariants W 2 and P 2. The massless (with spin fixed) limit, the helicity limit and the Pauli-Lubanski
limit can be easily understood from this picture (taken from [9], with opposite conventions about
the signature of η =diag(−1,+1,+1,+1) )

Finally, let us consider three interesting limits of the UIR of the (double cover of)
Poincaré group we have considered so far(see [35]):

• The massless limit m2 → 0 (with spin fixed) of a spin s massive representation gives
the direct sum of helicity representations of helicity |h| = s, s− 1, ..., 0;

• The helicity limit κ → 0 of a single (bosonic or fermionic) continuous spin represen-
tation gives the direct sum of an infinite tower of helicity representations (either all
integer spins or all half-integer spins);

• The zero-mass/infinite-spin (or Pauli-Lubanski) limit m→ 0, s→ +∞ with the prod-
uct κ = ms fixed transforms the spin s massive representation into the continuous
spin representation (either bosonic or fermionic).

The last limit provides an interpretation of a continuous spin particle as the high-energy
(E � m) large-spin (s � 1) limit of a massive particle in the regime E ∼ κ = ms. In
particular the dimensionful energy scale κ can be seen as the remnant of the mass m in a
suitable massless limit (Pauli-Lubanski limit). And this limit can explain clearly the exotic
properties of CSPs starting from the properties of the well-known massive representations.
In the figure 2.2, the massless (respectively helicity) limit corresponds to going towards
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the origin along a spin s massive line (respectively along a vertical line) whereas the Pauli-
Lubanski limit corresponds to increasing the slope of the massive line till it becomes a
vertical line.

2.6 The concept of elementary particles

In high energy physics, the phrase elementary particle is unfortunately used for truly
elementary particles (these are stable particles, which do not decay into others) but also
for a lot of unstable particles. Unstable particles are elementary particles that can decay by
themselves, without interacting with another particle, into other elementary particles.

Let me start with the stable elementary particles. The very fact that they are called ele-
mentary means that all mathematical structures needed to describe their properties should
be such that these cannot be decomposed into smaller entities. Otherwise, it would be
extremely likely that the particle described with these mathematical structures could also
be decomposed into "smaller" particles, it would not be stable, or it could at least be frag-
mented by external forces. Thus, if properties of particles are related to representations of
(Lie) groups, stable elementary particles should be related to the smallest possible represen-
tations, i.e. the basic building block representations (which happen to be irreducible). All
the other particles, which happen to be unstable, will ultimately decay into stable elemen-
tary particles. Thus, they should be related to representations which can be decomposed
into the smallest ones. A particle can only decay into other particles, if the tensor prod-
uct of all the representations related to the fragments contains the representation of the
original particle. High energy experiments produce quite a lot of states which physicists
like to associate with particles or excited states of particles. Since the compact Lie groups,
which typically appear in physics, have the property that all of their finite dimensional rep-
resentations can be decomposed into direct sums of irreducible representations, it became
customary to associate the word particle in the sense of building block of physical entities
to irreducible representations. But as explained above, only stable elementary particles are
naturally associated with particular representations, the irreducible representations of uni-
versal cover of Poincaré group. For the others, it is merely a convenient way to get some
order into the zoo of high energy physics. Therefore working with the irreducible represen-
tations is a convenient choice of basis. Regarding the question of stability, in that case there
should be -also from an intuitive point of view- a time asymmetry (there is one favourite
direction for the flowing of time) and indeed some authors considerer representations of
a semigroup containing the Lorentz group and space-time translations into the future (see
[36] [37])

To specify the free elementary particles capable of existing in a universe, i.e., the free
elementary "particle ontology", one therefore specifies the projective, unitary, irreducible
representations of a "local" space–time symmetry group. However, because because free
particles are physical idealisations, one works backwards from the space–time symmetry
group of interacting systems, and one bestows this symmetry group on free particles to
ensure that when the idealisation is removed, and interactions are included, the space–time
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symmetry group is correct. Thus the symmetry group for free particles can be a subgroup
determined by the space–time symmetry of interacting particles, and not necessarily the
largest local space–time symmetry group permitted by the structure of space–time. In turn,
the space–time symmetry group of interacting particles is determined by which gauge fields
exist, and the way in which matter fields couple to those gauge fields. Infact in our case the
parity and time-reversal symmetries are violated in nature, and the space–time symmetry
group of interacting particles turns out to be only the physical Poincaré group P↑+ and not
the full group of isometries of Minkowski space P = R4 o O(1, 3). However, even with
the local symmetry group fixed, the projective, unitary, irreducible representations of this
group only determine the set of possible free particles. In our universe, only a finite number
of elementary free particle types, of specific mass and spin, have been selected from the
infinite number of possible free elementary particle types. Thus, in terms of describing the
particle world in our universe at least, there is a type of ‘surplus structure’ in the SM. The
discrepancy between actual and possible particle types in the standard model is either (i)
an indication of the incomplete nature of the SM, or (ii) an indication that the masses and
spins of the actual particle types in a universe is a matter of contingency ( [38]).

In terms of the Wigner representation, first quantization is the process of obtaining a
Hilbert space of cross-sections of a vector bundle over mass hyperboloids H±m and light
cones ∂V ±. The second quantization then permits to construct a Fock space using such
Hilbert space, treating it as a "one-particle" state space. In particular free particles of mass
m and spin s correspond to vector bundles Em,s over mass hyperboloids H±m and light cones
∂V ± in the Minkowski energy momentum space T ∗xM' R1,3. Thus the fiber at each point
p ∈ H±m (or ∂V ±) is the vector space E±m,s. The physically relevant irreducible (strongly

continuous) unitary representation of the universal cover of the Poincaré group P̃↑+ are
provided by the Hilbert spaces H±m,s of square integrable (with respect to the base space)
sections ΓL2(E±m,s) of these vector bundles Em,s. Moreover we notice that the irreducible

unitary representation of P̃↑+ on the space ΓL2(E+
m,s) of the square-integrable cross-sections

ofE+
m,s (over the forward mass hyperboloid or light cone) for a particle of massm and spin s

is unique up to unitary equivalence. The antiparticle os mass m and spin s is represented by
the conjugate representation on the space ΓL2(E−m,s) of the square-integrable cross sections
of the vector bundle E−m,s (over the backward mass hyperboloid or light cone). Therefore
the particle is represented by the Hilbert space H, then the antiparticle is represented by
the conjugate Hilbert space H and the two representations are related by an antiunitary
transformation.

There is also another notion of elementary particles, according to which each different
type of elementary particle is specified by the values of invariant properties, such as mass,
spin and charge. This is compatible with the previous notion, since as we saw in the
previous paragraphs the positive, unitary and irreducible representations of the physical
Poincaré group are labelled by the value of the massm and of the spin s. Regarding charges,
in relativistic quantum field theory there are superselection sectors that are eigenspaces of
the charge operators. Therefore the most general one-particle Hilbert space can be always
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decomposed as the direct sum

H =
⊕
q,l,b∈Z

H(q, l, b) (2.42)

where the indexes q, l and b are related to the electric, leptonic and baryonic charge re-
spectively. The entire algebra of observables is represented on the full H, and within this
algebra there are also self-adjoint operators which represent electric charge Q, leptonic
charge L and baryonic charge B and which commute will all other operators representing
physical observables. Q, L and B possess integer-valued spectra: each superselection sector
corresponds to a different combination (q, l, b) ∈ Z × Z × Z and possesses an UIR of the
(double cover of) Poincaré group.
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3 The infinite spin representation and string localized fields

3.1 The Hilbert one particle space in the infinite spin representation

As we saw in the previous chapter, an irreducible positive energy representation U1 of
P↑+ is characterized by the mass value m2 := 〈p, p〉 and by an unitary irreducible represen-
tation d of the little group Stabp acting in a Hilbert space h, where pref ∈ H+

m (forward mass
hyperboloid) for m > 0 or pref ∈ ∂V + (forward light cone) for m = 0.

For the massive case, Stabp ' SU(2) for each pref ∈ H+
m and the irreducible represen-

tations of SU(2) are parametrized by s ∈ 1
2Z

+. One possible realization of these SU(2)

representations can be the space Vs of homogeneous polynomials of degree s on C2. There-
fore (by the method of induced representation) for a particle of mass m and arbitrary spin
s we obtain a vector bundle E+

m,s over H+
m with typical fibre Vs and an irreducible unitary

representation of P↑+ upon the space ΓL2(E+
m,s) of square-integrable sections of the vector

bundleE+
m,s. For the massless case, Stabp ' Ẽ(2) and the orbits of Ẽ(2) acting on R2 consist

of concentric circles and the point at the origin. Considering the irreducible representations
related to the circle (infinite-spin case), the method of induced representation provides a
vector bundle over each circle and a representation of Ẽ(2) on the space of sections of each
such vector bundle. Therefore we obtain a vector bundle E+

κ over ∂V + with an infinite-
dimensional fibre. In the other case (helicity case), the isotropy group of the Ẽ(2)-action is
S̃O(2) and its irreducible representations are 1-dimensional and parametrized by h ∈ 1

2Z
+.

For each such representation one has a vector bundle over a single point, with typical fibre
isomorphic to C1 and a representation of Ẽ(2) upon the sections of such vector bundle.
This can be extended to a representation of R(1,3) o Ẽ(2), and for each such representation
parametrized by the helicity h ∈ 1

2Z
+ there is a vector bundle E+

0,h over ∂V +, with typical
fibre isomorphic to C1.

Therefore the representation U1 acts on

H1 = L2(H+
m, dµ)⊗ C2s+1 dµ(p) = Θ(p0)δ(p2 −m2) d4p (3.1)

for the massive case or

H1 = L2(∂V +,dµ)⊗ h dµ(p) = Θ(p0)δ(p2) d4p (3.2)

for the massless case, where dµ is the Lorentz invariant measure dµ(p) on H+
m or ∂V +

respectively and h is the Hilbert space where d acts. Since the forward light cone ∂V +

is parametrized as p0 > 0 and |p⊥|2 = |p1 + ip2|2 = (p0 − p3)(p0 + p3) = p−p+ where
p⊥ = p1 + ip2 and p± = p0 ± p3, then the SO↑(1, 3)-invariant measure dµ(p) on ∂V + has
the form dµ(p) = Θ(p0)δ(p2)d4p = Θ(p0)dp+

p+
dp⊥ dp∗⊥.

Considering one particle states for the infinite-spin case, the Pauli-Lubanski parameter
κ labels nonequivalent representations of Ẽ(2) and therefore the representation space of
Stabp is the Hilbert space Hκ of functions of k ∈ R2 square integrable with respect to the
measure dνκ = δ(|k|2 − κ2) d2k. Let ψ(p) be an Hκ-valued function of p ∈ R4, square
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integrable with respect to the Lorentz invariant measure dµ on ∂V +. Therefore the unitary

representation U1 of P̃ ↑+ on one particle Hilbert state

H1 = L2(∂V +, dµ)⊗Hκ Hκ = L2(k, dνκ) (3.3)

acts as (U1(a,Λ) ∈ B(H1), where B(H1) is the space of all bounded linear operator in H1),
generalizing the analogue equation (2.32) for the infinite spin case

(U1(a,Λ)ψ)(p) = eip·adκ(W (Λ, p))ψ(Λ−1p) (3.4)

where W (Λ, p) = B−1
p ΛBΛ−1p ∈ Ẽ(2) denotes the Wigner rotation and Bp is a boost that is

properly chosen for the reference vector pref = (1, 0, 0, 1). The mapping ∂V + → SL(2,C)

given by pref 7→ Bp constitutes indeed a family of (Wigner) boosts such that Bppref =

p ∀ p ∈ ∂V +. This representation extends to the full Poincaré group by adjoining repre-
senters for the space reflection P (or parity transformation) and the time reflection T =
−P ( [38]).

In order to describe many-particle systems consisting of a finite number of one-particle
systems, we will follow the second quantization procedure. In this paragraph we will avoid
the bra-ket notation. Let us denote by H⊗NS the symmetrized (bosonic), by H⊗NA the anti-
symmetrized (fermionic) N -fold tensor product H⊗N = H1 ⊗ H1 ⊗ ... ⊗ H1 of the Hilbert
space H1 ( [39]):

H⊗NS = EN+ (H⊗N ) =
1

N !

∑
P

SP (H⊗N ) (3.5)

H⊗NA = EN− (H⊗N ) =
1

N !

∑
P

sgn(P )SP (H⊗N ) (3.6)

where EN± are projection operators15, SP denotes the operator representating the permu-
tation of particles SP (ψ1 ⊗ ψ2 ⊗ .... ⊗ ψN ) = (ψP (1) ⊗ ψP (2) ⊗ .... ⊗ ψP (N)) (represen-
tation of the permutation group) and sgn(P ) = ±1 for even/odd permutations respec-
tively. The scalar product of two basic vectors Ψ = (ψ1 ⊗ ψ2 ⊗ .... ⊗ ψN ) ∈ H⊗N and
Φ = (φ1⊗φ2⊗ ....⊗φN ) ∈ H⊗N is defined as 〈Ψ,Φ〉N = 〈ψ1, φ1〉1 · 〈ψ2, φ2〉1 · ... · 〈ψN , φN 〉1,
where 〈·, ·〉1 is the scalar product in the single particle Hilbert space H1. This definition can
be easily extended to the general state Ψ ∈ H⊗NS/A, where Ψ can be a linear (symmetrized or
antisymmetrized) combination of tensor product of single particle states belonging to H1.
We have thus the additional feature that the particles cannot be distinguished for a many
particle system of the same kind of a particles (bosonic/fermionic statistics), and we con-
sider only observables (and so operators) which commute with all SP and their irreducible
representations.

15The projection operators EN± satisfy the properties

(EN± )2 = EN± (3.7)

(EN± )† = (EN± ) (3.8)

where † denotes the hermitian conjugate.
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Having the description of multi-particle systems with a fixed number of particles N , we
now want to describe a system with an undertermined number of particles: the particle
number N becomes a dynamical variable ( [40]) and we define the boson/fermion Fock
spaces as:

FS/A(H1) =

+∞⊕
N=0

H⊗NS/A (3.9)

where H0 = C is a one-dimensional space representing the vacuum state in which no parti-
cle is present. We choose one vector Ω = (1, 0, 0, ....) ∈ H⊗NS/A and we call it the Fock vacuum.
An element of FS/A(H1) is an infinite sequence of states Φ = (C,Φ1,Φ2, ....) with C ∈ C
and ΦN ∈ H⊗NS/A. The Fock space is also an Hilbert space with a scalar product defined as
〈Φ,Ψ〉 =

∑+∞
N=0〈ΦN ,ΨN 〉 and all vectors Φ ∈ FS/A(H1) ( [41]). Second quantization is a

functor between Hilbert spaces that associates to the original one-particle space the suitable
(anti)symmetric Fock space, to self adjoint operators V their second quantization dFS/A(V )

and to unitary operators e−itV the second quantization FS/A(e−itV ) = e−itdFS/A(V ). Indeed
the second quantization U of the one-particle unitary operator U1 acts on FS/A(H1) by
UΛ = Λ and (UΦ)N = (

⊕N
j=0 U1)ΦN and so it preserves the number of particles. To intro-

duce annihilation and creation operators one has to use "standard" quantization procedure:
for a vector φ ∈ H1, they are denoted as a(φ) and a†(φ). These operators satisfy

[a(φ), a(ψ)]± = [a†(φ), a†(ψ)]± = 0 [a(φ), a†(ψ)]± = 〈φ, ψ〉1 ∀φ, ψ ∈ H1 (3.10)

a(φ)Ω = 0 ∀φ ∈ H1 (3.11)

where the + sign stands for commutation (bosons) and the − sign stands for anticommu-
tation (fermions). These properties pick out just one (the Fock one) of the infinitely many
unitarily inequivalent irreducible representations of the canonical commutation relations
(C∗-algebra) built on such one-particle space H1.

3.2 Free quantum fields for the finite spin representation

Experiments in high energy physics are described in terms of collision processes of par-
ticles. The S matrix, central object of the description of scattering experiments involving
the interactions between the given particles, is related to the scattering amplitudes of the
physical processes and motivates the introduction of local quantum fields. Indeed the con-
struction of relativistic interactions V (t) using local fields can be motivated by invoking
the spatial clustering principle for relativistic scattering amplitudes16 ( [28]). Despite that
there exist also other ways to construct (consistent) relativistic quantum mechanical the-
ories, like direct particle interactions theories (DPI)17, which involves only particles and
satisfy Poincaré covariance, unitarity and macro-causality of the resulting S-matrix (which
includes spatial cluster factorization, see [42] [43]).

16Since the S matrix has to be Lorentz invariant, V (t) can be written as
∫

d3xHint(~x, t), with Hint(x) scalar
built up with creation and annihilation operators and satisfying U1(a,Λ)Hint(x)U1(a,Λ)−1 = Hint(Λx+ a) and
[Hint(x), Hint(x

′)] = 0 whenever x and x′ are spacelike separated.
17this is mainly a phenomenological framework
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QFT is usually formulated in terms of pointlike (covariant and local) quantum fields
Ψk(x) , k = 1, .., N , which are operator-valued tempered distributions in H, that are maps
Ψk : S(M) 7→ O(H) such that there exists a common dense subspace B ⊆ H satisfying

• for each f ∈ S(M) and each k = 1, ..., N the domain of definition of the quantum
fields DΨk contains B

• the induced map S(M)→ End(B), f 7→ Φk(f)|B is linear

• for each v ∈ B and w ∈ H the assignment f 7→ 〈w,Φk(f)(v)〉 is a tempered distribu-
tion

where S(M) denotes the Schwartz space of functions over the Minkowski space and O(H)

the set of all densely defined operators in the Hilbert space H ( [27])18. The concept of a
quantum field as an operator-valued distribution corresponds better to the actual physical
situation than the more familiar notion of a field as a quantity defined at each point of
spacetime. Indeed, in experiments the field strength is always measured not at a point x of
spacetime but rather in some region of space and in a finite time interval. Therefore, such
a measurement is naturally described by the expectation value of the field as a distribution
applied to a test function with support in the given spacetime region.

The relativistic invariance of the theory is formalized by the following relativistic prop-
erties of these fields Ψ:

• (Covariance) If one represents the operator-valued distribution Ψk symbolically by
a function Ψk(x) ∈ O(H), then the fields transform covariantly under the Poincare
transformations U(a,Λ) = U(a, 1)U(0,Λ):

U(a,Λ(A))Ψk;l(x)U(a,Λ(A))−1 =
∑
m

Dk(A
−1)lmΨk;m(Λx+ a) ∀ (a,A) ∈ P̃ ↑+ (3.12)

where U(Λ(A)) (A ∈ SL(2,C)) are (strongly continuous) unitary operators andD(A)

is a finite dimensional representation of SL(2,C). We notice that there are many
representations, including the scalar, the vector and a host of tensor and spinor rep-
resentations. These particular representations are irreducible, but we do not require
at this point that D(A) be irreducible; in general it is a block-diagonal matrix with
an arbitrary array of irreducible representations in the blocks. Therefore the index
l includes a label that runs over the types of particle described and the irreducible
representations in the different blocks, as well as another that runs over the compo-
nents of the individual irreducible representations. This is a purely formal way of

writing the equivariance between the actions on S and H where P̃ ↑+ acts on End(D)
by conjugation, i.e.

U(a,Λ(A))Ψk;l(f)U(a,Λ(A))−1 =
∑
m

Dk(A
−1)lmΨk;m((a,Λ)f) ∀ f ∈ S(M), (a,A) ∈ P̃ ↑+

(3.13)

18Usually it is assumed also that the vacuum state vector Ω, with the property of being the unique transla-
tionally invariant state in H, is a cyclic vector for the fields, i.e. that by applying polynomials of the (smeared)
fields to the vacuum one obtains a dense set D0 ⊆ H
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Moreover the common domain B is Poincaré invariant and also invariant under the
action of the fields:

U(a,Λ(A))B ⊆ B ∀ (a,A) ∈ P̃ ↑+ Ψk(f)B ⊆ B ∀ f ∈ S(M), k = 1, ..., N (3.14)

• (Microcausality or locality) The fields either commute or anticommute at spacelike
separated points

[Ψk(x),Ψp(y)]∓ = 0 ∀ k, p = 1, ..., N for (x− y)2 < 0 (3.15)

In this construction we mention also the fact that the joint spectrum of the generators Pµ

is contained in the forward closed cone V + = {pµ : p2 ≥ 0, p0 ≥ 0}.
For the explicit construction of the pointlike free fields of arbitrary mass and finite spin

we will follow Weinberg ( [28]). In the following we consider the k index of the set of fields
to be fixed (and so we drop it). The labels σ and n we will use stand for the particle’s spin
z-components and for the species of the particle. Therefore in the following l will denote
a generic set of dotted/undotted spinorial indices, since we are working with irreducible
representations of SL(2,C). As we discussed before, it is natural19 to build the interaction
density operator Hint out of annihilation ψ+

l (x) and creation fields ψ−l (x) defined as

ψ+
l (x) =

∑
σn

∫
d3p ul(x; ~p, σ, n)a(~p, σ, n) (3.16)

ψ−l (x) =
∑
σn

∫
d3p vl(x; ~p, σ, n)a†(~p, σ, n) (3.17)

with coefficients -called intertwiners- ul(x; ~p, σ, n) and vl(x; ~p, σ, n) chosen so that under
Lorentz transformation the fields transform as in equation (3.12). Since the transformation
rules for the annihilation a(~p, σ, n) and creation operators a†(~p, σ, n) can be read directly
from the trasformation properties of single-particle states20 we can write explicitly for the
intertwiners∑

σ

ul̄(Λx+ a;
−→
Λp, σ)d

(sn)
σσ (W (Λ, ~p)) =

√
p0

(Λp)0

∑
l

Dl̄l(Λ)ei(Λp)·aul(x; ~p, σ, n) (3.18)

∑
σ

vl̄(Λx+ a;
−→
Λp, σ)d

(sn)∗
σσ (W (Λ, ~p)) =

√
p0

(Λp)0

∑
l

Dl̄l(Λ)e−i(Λp)·avl(x; ~p, σ, n) (3.19)

where sn is the spin of particles of species n and we are considering the group action of the
Poincaré group with elements (a,Λ). Considering translations, it is possible to write

ul(x; ~p, σ, n) = (2π)−
3
2 eip·xul(~p, σ, n) vl(x; ~p, σ, n) = (2π)−

3
2 e−ip·xvl(~p, σ, n) (3.20)

19due to cluster decomposition and Lorentz invariance
20under Poincaré group action, it is easy to show that a(~p, σ, n) transforms as

U(Λ, b)a(~p, σ, n)U−1(Λ, b) = ei(Λp)·b
√

p0

(Λp)0

∑
σ

d
(sn)
σσ (W (Λ, ~p)−1)a(

−→
Λp, σ, n)
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In order to respect the locality property, we have to combine combine annihilation and
creation fields in linear combinations to construct fields

ψi(x) = κiψ
+
i (x) + λiψ

−
i (x) (3.21)

with the constants κi and λi and any other arbitrary constants in the fields adjusted to
satisfy the following equations (see (3.15)):

[ψl(x), ψm(y)]∓ = [ψl(x), ψ†m(y)]∓ = 0 ∀ l,m for (x− y)2 < 0 (3.22)

Moreover, in order that interaction density operator Hint should commute with the charge
operator Q (or some other symmetry generator) it is necessary that it is formed out of fields
that have simple commutation relations with Q:

[Q,ψj(x)] = −qjψj(x) (3.23)

where qj is the charge q(n) of the field. Therefore we have to construct Hint as a sum of
products of fields ψj1ψj2 ... and their adjoints ψ†i1ψ

†
i2
... such that qj1+qj2+...−qi1−qi2−... = 0.

Using equation (3.23), it is easy to show that to conserve quantum numbers (like electric
charge), there must be a doubling of particle species carrying non-zero values of q(n): if
a if a particular component of the annihilation field destroys a particle of species n, then
the same component of the creation field must create particles of a species n, known as
the antiparticles of the particles of species n, which have opposite values of all conserved
quantum numbers. This is the reason of the existence of antiparticles( [28]).

For simplicity we will restrict our attention, from now on, to fields that destroy only a
single type of particle (so dropping the label n) and create the corresponding antiparticle
and also that transform irreducibly under the Lorentz group. In the general case, one also
need to include the charge-conjugate annihilation ac(~p, σ) and charge-conjugate creation
operator ac,†(~p, σ) in order to describe particles with distinct antiparticles. We recall that
the general (finite-dimensional) irreducible representation of the Lorentz algebra so(3, 1)

is non unitary and is classified by an ordered pair of half-integers A and Ḃ, that is with
the couple (A, Ḃ)21. This is due to the fact that in order to classify all (real linear) rep-
resentations of the semisimple Lie algebra so(3, 1), we need only the irreducible complex
linear representations22 of the complexified Lie algebra so(3, 1)C. From the generators
Mµν of the Lorentz algebra so(3, 1), namely the canonical generators of boost Ki = M0i

and of rotations J i = 1
2ε
ijkMjk, we can define the complexified generators Ai = Ji+iKi

2 and
Bi = Ji−iKi

2 which satisfy the su(2) algebra:

[Ai, Aj ] = iεijkAk [Bi, Bj ] = iεijkBk [Ai, Bj ] = 0 ∀ i, j, k ∈ {1, 2, 3} (3.24)

One has the following isomorphisms, at the level of representations( [44])

so(3, 1) ↪→ so(3, 1)C ' su(2)C ⊕ su(2)C ' sl(2,C)⊕ sl(2,C) ' sl(2,C)⊕ isl(2,C) ' sl(2,C)C(3.25)

21this is the so called dotted/undotted spinorial notation
22due to the semisimplicity property
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3 The infinite spin representation and string localized fields

and so the complex linear irreducible representations of sl(2,C) ⊕ sl(2,C) are indexed by
a couple of half-integers A and Ḃ, and has dimensionality (2A+ 1)(2Ḃ + 1). Then we can
associate to a general (m, s) Wigner representation a covariant quantum field

ψ(A,Ḃ)(x) =
1

(2π)
3
2

s∑
σ=−s

∫
d3p

[
κa(~p, σ)u(A,Ḃ)(~p, σ)eip·x + λac,†(~p, σ)v(A,Ḃ)(~p, σ)e−ip·x

]
(3.26)

where dotted/undotted spinorial indices are related to the physical spin s through the fol-
lowing inequalities (therefore for any s there are infinitely many spinorial representation
indices)

|A− Ḃ| ≤ s ≤ |A+ Ḃ| form > 0 |A− Ḃ| = |h| form = 0 (3.27)

It is possible to show (see Weinberg [28]) that the formula for the generic (A, Ḃ) field of a
given particle, that is unique up to overall scale, is

ψ(A,Ḃ)(x) =
1

(2π)
3
2

s∑
σ=−s

∫
d3p

[
a(~p, σ)u(A,Ḃ)(~p, σ)eip·x + (−1)2Ḃac,†(~p, σ)v(A,Ḃ)(~p, σ)e−ip·x

]
(3.28)

We notice that whereas in the massive case the relation of the physical spin s with the
formal spin in the spinorial pointlike fields follows the angular momentum composition
rules which leads to the spinorial restrictions (3.27) (but still there are infinitely many
possibilities to represent the same massive particle), the zero mass finite helicity family has
a significantly reduced number of spinorial pointlike descriptions.

One notices that in the zero mass case the vector representation (A, Ḃ) =
(

1
2 ,

1
2

)
for

|h| = 1 and the (A, Ḃ) = (1, 1) for |h| = 2 are missing, i.e. precisely those fields which
correspond to the classic electromagnetic vector potential and to the metric tensor. This
actually holds for any |h| if A = Ḃ. For helicity |h| = 1 the best one can do is to work with
covariant field strength Fµν which in the spinorial formalism correspond to (1, 0) ⊕ (0, 1)

instead of working with classical vector potential Aµ ( (A, Ḃ) =
(

1
2 ,

1
2

)
) which simply does

not occur in local QFT with second quantization on the Hilbert space. I want to recap briefly
here the argument for the simplest case. Let’s try to construct a four vector Aµ (

(
1
2 ,

1
2

)
) for a

massless particle of helicity h = ±1, using the standard creation and annihilation operators:

Aµ(x) =
1

(2π)
3
2

∑
σ=±1

∫
d3p

[
a(~p, σ)uµ(~p, σ)eip·x + a†(~p, σ)uµ(~p, σ)e−ip·x

]
(3.29)

where we used all equations 3.18 to put vµ(~p, σ) = uµ(~p, σ) and we normalize the coeffi-
cients λ and κ. In the four-vector representation D(Λ)µν = Λµν and we decide to normalize
intertwiners as uµ(~p, σ) = (2p0)−

1
2 eµ(~p, σ) with the so-called polarization vectors eµ(~p, σ).

The transformation law for the polarization vectors should then be

eiσθeµ(~p, σ) = W (R(θ),~t)µνe
ν(~p, σ) ∀σ = ±1 (3.30)
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3 The infinite spin representation and string localized fields

where we decomposed the little group Ẽ(2) into a rotation R(θ) of an angle θ and two
translation generators ~t = (t1, t2). It is easy to see that the two vectors (amplitudes for
circular polarized plane waves with wave vector p0)

eµpol(±) =
1√
2

(0, 1,±i, 0) (3.31)

satisfies (3.30) for elements of the little group W (R(θ)) depending only on the rotation
part. For the general transformation of the little group W (R(θ),~t), it can be shown that the
law holds only up to a vector proportional to p0 ( [45] [28]). If we define, for any mo-
mentum ~p, eµ(~p,±) = Bpe

µ
pol(±) then the inhomogeneous transformation law for uµ(~p,±)

is

W (R(θ),~t)µνu
ν(~p,±) = eiσθ(W,p))

(
uν(
−→
Λp,±) + γ±(Λp)ν

)
(3.32)

with some coefficients γ± ∈ C. This means that the fields Aµ±(x) defined as

Aµ±(x) =
1

(2π)
3
2

∫
d3p

[
a(~p,±)uµ(~p,±)eip·x + a†(~p,±)uµ,∗(~p,±)e−ip·x

]
(3.33)

transform as gauge fields with gauge parameters Γ±:

U(a,Λ)Aµ±(x)U(a,Λ)−1 = (Λ−1)µν
(
Aν±(Λx+ a) + ∂νΓ±

)
(3.34)

We have thus come to the conclusion that no four-vector field Aµ(x) = Aµ+(x) +Aµ−(x) can
be constructed from the annihilation and creation operators for a massless particle with
helicity |h| = 1.

These gaps in the massless case have important physical consequences.( [46]) The ex-
planation of this dilemma, which also leads to its cure, is that the loss of pointlike quantum
potentials is the result of a clash between the Hilbert space structure (positivity)23 and
pointlike localization (or modular localization24). There are two ways out: gauge theory
(in covariant gauge) which sacrifies the Hilbert space and keeps the pointlike formalism
and the use of stringlike potentials which allows to preserve the Hilbert space. In the last
case the missing spinorial fields reappear after relaxing the localization from pointlike to
stringlike.

The first is the standard path, namely to keep pointlike fields. The second way is un-
usual, and linked somehow to the infinite spin representation case we haven’t discussed so
far. The following No-Go theorem states clearly that the (axiomatic) Wightman framework
of QFT is incompatible with this class of Poincaré representations, and we need to relax
some of the assumptions of this theorem in order to go further with the construction of a
quantum (free) field.

Independently of this choice, in the pointlike case the well-studied perturbative for-
malism usually comes with the introduction of additional unphysical degrees of freedom
(ghosts) due to the indefinite metric setting. There are many formalisms (Gupta-Bleuler,

23notice that instead in the classical theory Hilbert space positivity doesn’t concern us
24we will explain briefly later the meaning of this term
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3 The infinite spin representation and string localized fields

BRST for pure Yang Mills theories and Batalin–Vilkovisky for general Lagrangian gauge
theories) already developed in order to deal with the ghost structure of the QFT. Since in
typical perturbation calculations one does not use the Hilbert space norm for control of
convergence (as Schwartz inequality) there is no problem at this stage, but at the end one
has to reconvert the calculated correlation functions into a Hilbert space setting (gauge
invariant objects). The use of string-localized fields deflect the formal problems of extract-
ing quantum data from an unphysical indefinite metric setting to the ambitious problem
of extending perturbation theory to the realm of string-localized fields. For example one
recent idea regards an extension Epstein-Glaser construction of time-ordered products to
the string-localized fields setting.

3.3 The No-Go theorem by Yngvason and the modular localization

Within the (generalized) axiomatic framework of Wightman theory, a result indicating
the incompatibility of the infinite spin representations with local commutativity (that is, the
microcausality condition we mentioned in equation (3.15)) and covariant transformation
law has been proved by J.Yngvason( [2]). In addition to the usual requirement of the exis-
tence of an Hilbert space which carries a unitary representation of the Poincaré group, the
energy-momentum spectrum condition and the uniqueness of the vacuum he considered a
local quantum theory composed of fields that are operator-valued distributions and which
satisfy a (generalized) covariance transformation law25 and microcausality, as well as the
the property that repeatedly applying the field operators to the vacuum creates a dense
subspace of the Hilbert space (cyclicity of the vacuum). Under these assumptions it can be
shown that the one-particle states which the Wightman fields create from the vacuum are
orthogonal to any irreducible representation subspace of the Hilbert space for zero mass
and infinite spin, that is there are no nonvanishing matrix elements between the vacuum
and the infinite spin one-particle state. The only way to circumvent this no-go theorem is
to relax one of the assumptions, giving up pointlike localization of the Wightman fields.

An idea on how to solve this problem (as well as the previous one on the missing
spinorial fields) comes from the concept of causal localization in QFT. It is well-known that
no measurements taking place in regions of Minkowski space which are spacelike separated,
i.e. which cannot be connected by a light beam, should have an influence on each other.

In non-relativistic quantum mechanics (QM), Born’s principle of localization is as fol-
lows: for a single particle, if a wave function ψK(x) := 〈x|PK |ψ〉 vanishes outside a
bounded spatial region K, it is said to be localized in K. Here PK :=

∫
d3x |x〉 〈x| denotes

the projection operator which projects state vectors φ in the Hilbert spaceH to state vectors
with support in K, and it is clear that if a spatial region K is disjoint from a spatial region
K ′, a wave function ψK(x) localized in K is orthogonal to ψK′(x) (due to the properties
of the projection operator). Here there is also a sort of "natural duality" between local-
ization of states and localization of observables: for any observable A, due to the equality

25in order to include infinite spin representations one has to consider infinite dimensional representation of
SL(2,C)
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3 The infinite spin representation and string localized fields

〈ψK |A |χK〉 =
∫

d3x d3y 〈ψ|PKAPK |χ〉 valid ∀ |ψ〉 , |χ〉 we can equally restrict states (to
|ψK〉 , |χK〉) or observables (to PKAPK). This notion is limited to non-relativistic physics,
in which ~x trasforms under the Galilei group. ( [47])

The generalization of such a principle of localization for the relativistic case is called
Newton-Wigner (BNW) localization. One may characterize the BNW localization in a
bounded spatial region K at a given time in terms of a projector PK which appears in
the spectral decomposition of the selfadjoint position operator ~x, adapting the previous
construction to the case of an invariant scalar product of relativistic wave functions. Such
(family of) spectral projectors are supposed to measure the probability of detecting a (sin-
gle) particle in different space-time regions. To the region K corresponds the subspace
L2(K) ⊆ L2(R3) of wavefunctions with probability amplitude vanishing (almost every-
where) outside of K and -via an unitary transformation- a subspace of the Hilbert space
H. The lack of covariance of BNW localization in finite time propagation leads to frame-
dependence and superluminal effects; but still the basis for time-dependent scattering the-
ory in QM and QFT (and also various settings of measurament theory) rely on this concept
of localization. This is due to the fact that in the asymptotic limit of large timelike sep-
aration as required in scattering theory, the covariance, frame-independence and causal
relations are recovered. Anyway, such a principle of localization isn’t compatible with rela-
tivistic covariance and causality in QFT (or interacting point particles), except in an approx-
imate sense for distances of the order of the Compton wavelength or smaller: in that case
we loose the duality between localization of states and localization of observables, and we
have to look for a more intrinsic type of localization focusing only on observables.( [48],
[42])

The only concept of causal localization compatible with relativistic covariance and
causality is modular localization, that is intrinsically defined within the representation the-
ory of the Poincaré group but draws its motivation from local quantum field theory. This
concept does not refer anymore to individual operators (like the position ones) but rather
to local measuraments of observables (that is, an ensemble of observables which share the
same localization region). Having defined the algebra A of observables in QFT, to each
spacetime region O we can assign a subalgebra A(O) ⊆ A generated by the smeared field
operators Φ(f)26 with test functions f supported in O. The net structure of the observables
allows a local comparison of states: two states are locally equal in a region O iff the ex-
pectation values of all operators in A(O) are the same in both states. Local deviation from
any state, and in particular from the vacuum state, can be measured by local comparison:
this is particularly useful in order to define "strictly localized states" for a region O, that
is states which give the same expectation values as the vacuum for all measurements in
the causal complement of O. Thus regarding causality, this is mathematically expressed by
local commutativity (i.e. mutual commutativity of the algebras A(O) and A(O′)) and phys-
ically connected to the possibility of preparing states that exhibit no mutual correlations for
a given pair of causally disjoint regions O and O′. The space H̃(O) obtained by applying

26or their neutral currents in case the fields are charged
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3 The infinite spin representation and string localized fields

operators in A(O) to the vacuum is, for any open region O, dense in the Hilbert space
and thus far from being orthogonal to H̃(O′) (differently from the non-relativistic case we
mentioned before). This is due to unavoidable correlations in the vacuum state between
measurements at an arbitrary distance, that is a direct consequence of Reeh-Schlieder prop-
erty (by which any state can be approximated to arbitrary precision by acting on the vacuum
with an operator selected from the local algebra). At the end, using Tomita-Takesaki theory
it is also possible to recover localized states from local algebras.

Coming now back to the original problem, there is a natural localization structure on
the representation space for any positive energy representation of the restricted Poincaré

group P̃↑+ which upon second quantization gives rise to a (local) net of operator algebras
on the Fock space over the representation Hilbert space H. The role of quantum fields is
simply to "coordinatize" localized algebras by playing the role of singular generators of all
localized algebras. Skipping many technical details that the interested reader can find in
the beautiful paper ( [49]), the outcome is that the generating fields are pointlike operator-
valued distributions for the massive case and for the helicity representation whereas they
are semiinfinite spacelike string-localized operator-valued distributions for the continuous
spin case. In the last case, to be more precise, the generating fields are distributions on
R4 × {e ∈ R4 : e · e = −1}; moreover they are localized -in the sense of commutation
relations- along semiinfinite strings of the form x + R+e (with e · e = −1, that means
spacelike strings). Both kind of fields are singular limits of operators localized in causally
closed regions; pointlike fields in case of double cone localized and semi-infinite string-
localized fields in case of spacelike cone localized operators. The physical reason of this
difference is that in the continuous spin case the faithful representation of the little group
Ẽ(2) contains infinitely many degrees of freedom and doesn’t allow a compact localization.

3.4 String-localized fields

The "string" is a ray which extends from a point x ∈ R4 to infinity in a space–like direc-
tion. Let’s denote byH3 := {e ∈ R4 : e·e = −1} the hyperboloid of space-like directions and
by l a collection of dotted/undotted spinor indices.Let U be a unitary irreducible (positive
energy) ray representation of the restricted Poincaré group acting on a Hilbert spaceH with
a unique invariant vector Ω, which contains an irreducible representation U1 acting on H1.
A string-localized covariant quantum field is an operator-valued (tempered) distribution
Φl(x, e), where (x, e) ∈ R4 ×H3 and satisfies ( [7], [50])

• (String locality) if x1+R+e′1 and x2+R+e2 are spacelike separated for all e′1 in an open
neighborhood of e1 then [Φl(x1, e1),Φl′(x2, e2)]∓ = 0 (spacelike bosonic/fermionic
commutation rule)

• (Covariance) The transformation law is consistent with localization properties

U(a,Λ)Φl(x, e)U(a,Λ)−1 =
∑
l′

Dll′(Λ
−1)Φl′(Λx+ a,Λe) (3.35)
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3 The infinite spin representation and string localized fields

• (Reeh-Schlieder property) After smearing Φl(x, e) with test functions f and g in x and
e, the field operators generate a dense set in Fock space when applied to the vacuum
vector Ω (Ω is cyclic for the polynomial algebra of fields Φl(x, e))

The field is called free if it creates only single particle states from the vacuum vector Ω, that
is Φl(f, g)Ω ∈ H1.

The most direct (and general) method to construct string-localized fields is to smear a
point-like field over a semi-infinite space-like line

Φsmeared(x, e) =

∫ +∞

0
dt f(t)

∑
r

φr(x+ te)zr(e) (3.36)

where f(t) is supported in the interval [0,+∞[, r denotes Lorentz labels and z(e) is a tensor
formed from e which is Lorentz-invariant in the sense that

Drr(Λ)zr(Λ
−1e) = zr(e) ∀Λ ∈ L↑+ (3.37)

Using a non-trivial theorem stated in the MSY paper ( [6]) that we will explain later, one
can show that such Φsmeared(x, e) satisfies the "String-locality" and the "Covariance" property
we mentioned before.

Restricting our attention to the single particle vector Ψl(x, e) := Φl(x, e) for free fields,
we notice that it enjoys certain specific properties reflecting the covariance and locality of
the field. These properties are intrinsic to the representation U1 and can be formulated
without reference to the field, using the concept of a modular localization we mentioned in
the previous paragraph. We will call a H1-valued distribution satisfying the ensuing prop-
erties a string–localized covariant wave function for U1. Our strategy, that we will explain
in some details in the following paragraph, is to construct such a H1-valued distribution
Ψα(x, e) for given U1 and then to obtain the field via second quantization. Since U1 is in-
duced by a representation d of a subgroup (little group) G of the Lorentz group, then U1

is contained in U0 ⊗ V , where U0 is the scalar representation and V is one of the exten-
sion of d to the full Lorentz group. Thus the problem can be separated, and the U0 part
can be solved via Fourier transformation whereas for the V representation it is possible to
(implicitely) construct a localized covariant wave function living on H3. Consider then the
tensor product of a wave function localized at x for U0 and a wave function localized at
e ∈ H3 for V . The main result is that the projection onto U1 of this vector turns out to be a
vector which is localized for U1 in the string with initial point x and direction e.

We recall that the representation U1 is induced as by d as follows. For the massive
case H1 := L2(H+

m ,dµ) ⊗ h, where dµ is a Lorentz invariant measure on H+
m and h is the

representation space of d. On the H1 Hilbert space U1 acts according to

(U1(a,Λ)ψ)(p) = eia·pd(W (Λ, p))ψ(Λ−1p) (3.38)

where W (Λ, p) is the Wigner rotation defined by W (Λ, p) = B−1
p ΛBΛ−1p and for almost all

p ∈ H+
m , Bp is a Lorentz transformation which maps pref to p. Exactly the same argument

holds for the massless case, with the substitution H+
0 ↔ ∂V +. The equation (3.38) is
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3 The infinite spin representation and string localized fields

not suitable for the construction of covariant and local fields by second quantization. The
first reason is that the transformation matrix d(W (Λ, p)) depends generically on p (except
in the scalar case), and so in the x space the transformation law is nonlocal after Fourier
transformation. The second one is that Wigner rotation factors have singularities which
cause problems with the property of local commutativity( [6]).

These two problems in the pointlike free field case are solved by using the so-called
intertwiner functions, rectangular (2A + 1)(2Ḃ + 1) ⊗ (2s + 1) functions which intertwine
between unitary 2s + 1-component Wigner representation (the representer of the Wigner
rotation factor W (Λ, p)) and covariant (2A+ 1)(2Ḃ + 1)-dimensional spinorial representa-
tion labeled by the semi-integers A and Ḃ (with a representer of Λ), that is (recall equations
(3.18)).

s∑
σ̄=−s

ul̄(
−→
Λp, σ̄, n)d

(sn)
σ̄σ (W (Λ, p)) =

√
p0

(Λp)0

∑
l

Dl̄l(Λ)ul(~p, σ, n) (3.39)

s∑
σ̄=−s

vl̄(
−→
Λp, σ̄, n)d

(sn)∗
σ̄σ (W (Λ, p)) =

√
p0

(Λp)0

∑
l

Dl̄l(Λ)vl(~p, σ, n) (3.40)

Indeed these intertwiners connect the (m, s) irreducible one-particle Wigner representa-
tion with wave functions (and their associated quantum fields) transforming under certain
finite-dimensional (non-unitary) representations D of the Lorentz group.

In this case of pointlike localization the intertwiners above are determined by the co-
variant transformation law for the field ψ(A,Ḃ)(x), but we would be lead to the same family
of distribution valued intertwiners if modular localization was required instead. In other
words, covariance in the sense of the (classical) tensor/spinor calculus is in this case equiva-
lent to the quantum requirement of modular localization. The continuous spin case instead
required stringlike localization, as we will see soon.

3.5 Construction of Mund-Schroer-Yngvason intertwiners for the infinite spin
representation

The new solution, which in contrast to the mentioned above works also for the massless
infinite spin representations which remained outside the covariant spinorial formalism, is
to look at intertwiner functions u(e, ·) which depends as a distribution on the points e in the
set H3 of space-like directions, and absorb the Wigner rotation factor W (Λ, p) by trading it
with a transformation e 7→ Λe. We decide here to follow closely the paper of Mund, Schroer
and Yngvason ( [6]).

Let’s define the complexificationH3,c ofH3 asH3,c = {e ∈ C4 : e·e = −1}where the dot
denotes bilinear extension of the Minkowski metric to C4, that is e·e := e′ ·e′−e′′ ·e′′+2ie′ ·e′′

with e = e′ + ie′′. Let further T+ be the tuboid consisting of all e = e′ + ie′′ ∈ H3,c such
that e′′ is in the interior of the forward light cone ∂V +. The set of p for which the canonical
boost Bp is defined will be denoted by Ḣ+

m. We will consider (compact) subsets Ω of T+ of
the form Θ = H3,c ∩ (Ω1 + iR+Ω2) where Ω1 and Ω2 are compact subsets of R4 and Ω2 is
contained in the forward light cone.
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Considering the irreducible representation d of the little group, in the context of string-
localized fields we call a function u : T+ × Ḣ+

m → h an intertwiner if it satisfies the inter-
twiner property

d(W (Λ, p))u(Λ−1e,Λ−1p) = u(e, p) (3.41)

for (e, p) ∈ T+ × Ḣ+
m,Λ ∈ L

↑
+ and for almost all p the function e 7→ u(e, p) is analytic in the

tuboid T+. Moreover it is usually required that there is a constant N ∈ N0 and a function
M on Ḣ+

m which is locally in L2(Ḣ+
m,dµ) and polynomially bounded, and for every Ω ⊂ T+

(specified as above, in particular compact) there is a constant cΩ such that for all e ∈ Ω

holds

‖u(e, p)‖ ≤ cΩM(p)|e′′|−N (3.42)

(here | · | denotes any norm in R4). This bound is chosen so that for fixed p the function
e 7→ u(e, p) is of moderate growth near the real boundary H3 and therefore admits a
distributional boundary value in D′(H3):

Let’s now focus on the bosonic case for simplicity, restricting thus our attention to single
valued representations of the restricted Poincaré group. It is possible to prove a fundamen-
tal theorem about existence and uniqueness of string-localized fields:

Theorem 3.1 (String-localized fields (MSY [6], Theorem 3.3)). Let U1 be any irreducible
positive energy representation of the Poincaré group with faithful or trivial representation of
the little group. It follows:
i) Let u be an intertwiner function for d, and let uc be the conjugate intertwiner27. Then the
finite-spin field φ(x, e) defined by

φ(x, e) :=

∫
H+
m

s∑
σ=−s

dµ(p) {eip·xu(e, p, σ)a†(p, σ) + e−ip·xuc(e, p, σ)a(p, σ)} (3.43)

and the infinite-spin field φ′(x, e) defined by

φ′(x, e) :=

∫
H+
m

dµ(p)

∫
S1

d2k {eip·xu(e, p, k)a†(p, k) + e−ip·xuc(e, p, k)a(p, k)} (3.44)

satisfy "String-locality" and "Covariance" property. It further satisfies Reeh-Schlieder property
and moreover if the growth order N of e 7→ u(e, p) is zero, then the field is a function in e, and
the commutativity property already holds if x1 +R+

0 e1 is space-like separated from x2 +R+
0 e2

ii) A non-trivial intertwiner function u with these properties exists for all mentioned represen-
tations. It is unique up to multiplication with a function of e · p, which is meromorphic in the
upper half plane (that is to say, if û is another intertwiner function, then for almost all e ∈ T+

and for almost all p, u(e, p) = F (e, p)û(e, p) where F is a numerical function, meromorphic
on the complex upper half-plane)

27for the explicit definition, see the paper [6]
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iii) Conversely, let φ be a free string-localized field that satisfies "String-locality" and "Covari-
ance" property and which satisfies in addition the Bisognano-Wichmann property28. Then it is
of the form (??), up to unitary equivalence, with the intertwiner u and its conjugate intertwiner
uc

If for a string-like field φ(x, e) the space-like commutation property depend only on x

and not on e, then the field turns out to be point-like localized. According to the following
theorem, this is related to analiticity property of u:

Theorem 3.2 (Point-localized fields (MSY [6], Proposition 3.4)). A string-localized field
in the sense of covariance transformation property, is point-like localized if, and only if, the
function e 7→ u(e, p) is analytic on the entire complexified H3,c and the bound on u in equation
(3.42), with growth order N = 0, holds for all compact subsets of H3,c.

The reader interested in the proof of these theorems is referred directly to the MSY
paper.

It is useful to notice that the string-like field Φsmeared(x, e) that we obtained by smearing
a point-like field, in agreement with the theorem, can be written as in the equation (??),
with the intertwiner given by

u(p, e) = f̃(e · p)upoint(p, e) = f̃(e · p)
∑
r

v(p)k,rz(e)r (3.45)

where k = −s, ..., s and f̃ is the Fourier transform of f , being analytic in the upper half-
plane (but not in the whole plane, in which case one falls back to point-like localization).

In order to build up the intertwiners for the infinite spin representation, we need to
exploit the correspondence betweeen all irreducible unitary representations d of the little
group G and the representation acting naturally on functions on suitable G-orbits. Let Γ

be the G-orbit defined by Γ := {q ∈ H+
m : q · pref = 1}, where we have identified H+

0 with
∂V +. Then it is easy to show that Γ is isometric to the sphere S2 for m > 0, and to R2

for m = 0. Since every isomorphism of Γ extends, by linearity, to a Lorentz transformation
which leaves pref invariant, it follows that G is precisely the isometry group of Γ. Thus, the
isometry Γ ' S2 or R2 establishes the isomorphism G ' SO(3) or E(2), respectively for
m > 0 or m = 0. Let now dν denote the G-invariant measure on Γ, and let d̃ be the unitary
representation of G acting on L2(Γ,dν) as

(d̃(R)v)(q) := v(R−1q) (3.46)

with R ∈ G. It is known that d̃ decomposes into the direct sum of all irreducible repre-
sentations of G ' SO(3) for m > 0 and into a direct integral of all faithful irreducible
representation of G ' E(2) for m = 0. Hence for any faithful representation d of G there
exists a partial isometry V from L2(Γ, dν) into h which intertwines the representations d̃
and d: d(R)V = V d̃(R) with R ∈ G.

28We don’t have the intention to explain completely the exact mathematical meaning of this property in the
context of algebraic QFT, but it is a sort of compatibility requirement between algebraic properties and unitary
group representation properties (for a wedge)
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3 The infinite spin representation and string localized fields

We can now solve the intertwiner equation (3.41) by projecting a corresponding L2(Γ, dν)-
valued solution ũ(e, p) onto h. Let F be an arbitrary numerical function of the argument
q ·B−1

p e and define

ũ(e, p)(q) := F (q ·B−1
p e) (3.47)

u(e, p) := V ũ(e, p) (3.48)

With these definitions, then ũ solves

d̃(W (Λ, p))ũ(Λ−1e,Λ−1p) = ũ(e, p) (3.49)

since u has to solve equation (3.41). Since the imaginary part of q · e is strictly positive
if q ∈ H+

0 and e ∈ T+, then the analyticity property can be satisfied if F has an analytic
extension into the upper complex half plane.

A good choice for F is a generic power wα for suitable α ∈ C. In case α 6∈ Z, the
power wα is understood via the branch of the logarithm on C \ R−0 with ln 1 = 0, and
by continuous extension from the upper half plane if w ∈ R−, i.e. limε→0+(w + iε)α. In
general, the function q 7→ (q·e)α will be in L2(Γ,dν) only after smearing with a test function
h ∈ D(H3),

∫
dσ(e)h(e)(q ·e)α. The representation d̃ extends naturally to the Lorentz group

on the (dense) set of functions of this form via push-forward.
We want to briefly mention here that in the massive case m > 0 with spin s we can

write the explicit expression for the intertwiners and for the two-point function in the case
of string-like localization. It is possible to show that the general structure of intertwiners is
u(e, p) = F (e · p)u|s|(e, p), where F is an analytic function on the upper half plane which
is polynomially bounded at infinity and has moderate growth near the reals and u|s|(e, p)

can be computed explicitly. In particular since we are working in 4 dimensions u|s|(e, p) =

us0(B−1
p e) and each component us0(e)k (k = −s, ..., s) is given by

us0(e)k = is

√
(s+ k)!

(s− k)!
{(e1 + ie2)∂e3 − (∂e1 + i∂e2)e3}s−k(e1 − ie2)s (3.50)

and for real e ∈ H3

us0(e)k = (−i)s(1 + e2
0)

s
2Y ∗s,k(n(e)) (3.51)

where Ys,k are the spherical harmonics and n(e) :− (1 +e2
0)−

1
2 (e1, e2, e3) ∈ S3. The analitic-

ity and covariance transformation properties are now evident from the equations (3.50)
and (3.51) respectively. Moreover, in the massive case it can be shown that every string-
localized free field can be written as an integral, along the string, of a point-localized tensor
field Φsmeared(x, e).

In the massless infinite spin case and for F = wα, we wish to obtain a family of in-
tertwiners uα(e, p) labeled by α ∈ C with <α < 029. I want to recall that for m = 0 the

29This restriction is due to the fact that we want a unitary d̃ representation in L2(Γ, dν), since in that case
<α has to be − d−2

2
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3 The infinite spin representation and string localized fields

little group G is isomorphic to the euclidean group E(2) and the faithful irreducible uni-
tary representations of E(2) are labeled by κ ∈ R+. The representation d = dκ acts on
h = L2(R2, dνκ(k)) as

(d(t, R)u)(k) := eit·ku(R−1k) (3.52)

where (t, R) ∈ E(2) and dνκ(k) := δ(|k|2 − κ2) d2k. For m = 0 and base-point pref =

(1, 0, 0, 1) in H+
0 , the set Γ of all q ∈ H+

0 with q · pref = 1 is isometric to the euclidean space
R2 via the parametrization of Γ given by (in 4-dimension)

ξ(z) =

(
1

2

(
z2 + 1

)
, z1, z2,

1

2

(
z2 − 1

))
(3.53)

where z ∈ R2 and z2 := z2
1 + z2

2 . This isomorphism ξ from R2 to Γ identifies the action of
G in Γ with the action of E(2) in R2. One gets generalized intertwiners V = Vκ from the
representation d̃, to the irreducible representation d = dκ as, where the restrictions of the
Fourier transforms to a fixed value κ make sense,

(Vκv)(k) := ṽ(k) =

∫
R2

d2z eik·zv(ξ(z)) (3.54)

with |k|2 = κ2. Using equations (3.47), we can write explicitly the following intertwiners
defined for e ∈ T+ and p ∈ Ḣ+

0

uF (e, p) =

∫
d2zeik·zF (Bpξ(z) · e) (3.55)

and in the particular case of F = wα we have

uα(e, p) =

∫
R2

d2z eik·z(Bpξ(z) · e)α (3.56)

with |k| = κ. Let’s study the structure of the intertwiner in details. The function z 7→
Bpξ(z) · e is a quadratic polynomial in z. We write the scalar product in Minkowski space
with light-cone coordinates as x · p = 1

2(x+p− + x−p+)− x1p1 − x2p2, where x± = x0 ± x3,
so that ξ(z)+ = z2, ξ(z)− = 1, ξ(z)1 = z1 and ξ(z)2 = z2. Since the standard boost Bp for
the choice of pref can be written as (in the matrix 2 x 2 notation)

Bp =
1√

2(p0 + p3)

[
p0 + p3 p1 − ip2

0 1

]
(3.57)

therefore we have

Bpξ(z) · e = az2 + b · z + c (3.58)

with a = 1
2(p · e), b = −((B−1

p e)1, (B
−1
p e)2) ∈ C2 and c = 1

2(B−1
p e)+. Taking account that

4ac− b2 = e2 = −1 and of 2a = p · e > 0, we have

Bpξ(z) · e = a

(
z +

b

2a

)2

− 1

4a
(3.59)

It is worth noticing that z 7→ Bpξ(z)·e is a polynomial in z without any real zeroes if e ∈ T+,
so that the integral in equation (3.55) exists and defines a continuous function uα(e, p) of
k. It is a proper intertwiner in the sense of the definition of intertwiner we gave before, and
it is also bounded in p for <α ∈ [−2, 0.5) after smearing with a test function h ∈ D(H).
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3 The infinite spin representation and string localized fields

3.6 Construction of CSP one particle states

We decide here to follow closely the recent paper of Schuster and Toro ( [9]), adapt-
ing the notation to our conventions. A one-particle quantum mechanical approach to
continuous-spin particle (CSP) is look for covariant wavefunctions ψ whose defining prop-
erty relates the action of a generic Lorentz transformation Λ to the unitary (but momentum
dependent) little group action it induces, as the intertwiners condition (3.39). Thus such
wavefunctions behave like CSP single particle states. In particular, denoting the Lorentz
labels with l, l̄ and the Little group labels with a, a′ we require∑

a′

ψ(
−→
Λp, a′, l̄)daa′(W (Λ, p)) =

∑
l

Dl̄l(Λ)ψ(~p, a, l) (3.60)

We will focus now on the explicit construction of CSP one particle states. In the massless
case CSP one particle states are characterized by W 2 = −κ2 6= 0 (instead W 2 = 0 for
the usual helicity states) and going to a light-cone frame with momentum k+ 6= 0, k− =

k1 = k2 = 0 the Pauli-Lubanski vector has components W+ = 0, W− = −1
2k+ε

ijJij and
W i = −1

2k+ε
ijJj−, so thatW 2 = −W iW i and the helicity operator is h = −W−/k+. A basis

with vectors |κ, h〉 which are simultaneously eigenvectors of W 2 and h, with eigenvalues
−κ2 and h, respectively, must satisfy

W 2 |κ, h〉 = −κ2 |κ, h〉 κ2 > 0 (3.61)

h |κ, h〉 = h |κ, h〉 h = 0,±1,±2, ... (3.62)

W± |κ, h〉 = ±iκ |κ, h± 1〉 (3.63)

where W± = W 1 ± iW 2 increases/decreases the helicity by one unit so that the irreducible
representation comprises all basis vectors {|κ, h〉 , h = 0,±1,±2, ...} and hence it is infinite
dimensional ( [13]).

To classify Lorentz transformations that leave a momentum pµref invariant, we can con-
sider the independent components of wµ := 1

2ε
µνρσpref,νMρσ. The condition w · pref = 0

restricts the independent components to the three generators of the little group G, and this
motivates a decomposition of wµ into a "rotation" component proportional to pµref and two
"translation" components along polarization directions εµ1,2 with ε1,2 · k = 0

wµ = −pµrefR+ εµ1 t1 + εµ2 t2 (3.64)

Since pref = (1, 0, 0, 1), then we can expand wµ in components as

wµ = −pµrefM12 + êµx(M32 +M02) + êµy (−(M31 +M01)) (3.65)

where M12, (M32 + M02) and (M31 + M01) are the generators for Lorentz trasformations
that leave pref invariant. If q is the unique vector satisying

q2 = 0 pref · q = 1 q · ε1,2 = 0 (3.66)

then the components R and t1,2 can be extracted as

R = q · w t1,2 = ε1,2 · w (3.67)
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3 The infinite spin representation and string localized fields

Using the group structure of the Little group, inferred from the Pauli-Lubanski pseudo-
vector’s commutation relations (we just have to recall the Lorentz algebra)

[Wµ,W ν ] = −iεµνρσWρPσ

we can obtain commutators

[R, t1,2] = ±it2,1 [t1, t2] = 0 (3.68)

so that the little group G has the structure of E(2), the isometry group of a Euclidean plane.
Defining the conjugate raising and lowering generators t± = t1 ± it2, we can decompose
any G- element in a canonical way as

W (θ, β) = e
i√
2

(βt−+β∗t+)
e−iθR (3.69)

where θ ∈ [0, 2π[, β is complex and has dimensions of length (since translation generators
have units of mass). It is also useful to define a two-vector of little group translations
~t = (t1, t2).For (one-dimensional) helicity representations, labelled by h, the non-compact
translation generators ~t act trivially and the rotation R acts as a phase on single particle
states

U(W (θ, β)) |pref, h〉 = eihθ |pref, h〉 (3.70)

where the requirement of periodicity under rotations by 4π restricts h to be integer or half-
integer. Since we found previously that also the set of equations (3.61) holds, this means
that continuous spin one particle states are a superposition of all helicity eigenstates, either
all integer or all half-integer (bosonic and fermionic case respectively). Remembering that
the invariant W 2 = w2 = −t−t+ can be used to classify representations, for all helicity
representations W 2 = −κ2 = 0: these are the only finite-dimensional representations of
the little group G.

In the continuous spin case W 2 = −κ2 6= 0 and there is a countable tower of states on
which all generators of the little group G act non-trivially. We can describe the action in
two different bases: eigenstates of R (the "spin basis", labelled by an integer or half-integer)
or simultaneous eigenstates of t1 and t2 (labelled by an angle in [0, 2π[).

Figure 3.3: Comparison between the action of little group elements in the spin basis and in the
angle basis (taken from [9], in our conventions ρ 7→ κ and D 7→ d)
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3 The infinite spin representation and string localized fields

Let’s start from the angle basis. Eigenstates of t1 and t2, written as t1,2
∣∣pref,~t

〉
, are plane-

wave states in R2 on which E(2) acts. A useful parametrization of these kind of states is
given by ~tφ = (κ cos(φ), κ sin(φ)) for fixed κ with W 2 = −κ2. Therefore states are labelled
by the polar angle φ, with the periodic identification |0〉 = |2π〉30. Under rotations of the
little group,

U(W (θ, β)) |pref, φ〉 = e
i√
2

[(β+β∗)t1−it2(β−β∗)] |pref, φ+ θ〉 = (3.71)

= ei
~b·~tφ+θ |pref, φ+ θ〉 = eiκ<(

√
2βe−i(φ+θ)) |pref, φ+ θ〉 = (3.72)

=

∫
dφ′

2π
dφφ′(θ, β)

∣∣pref, φ
′〉 (3.73)

with dφφ′(θ, β) = (2φ)δ(φ′ − φ − θ)eiκ<(
√

2βe−i(φ+θ)) and ~b =
√

2(<(β),=(β))31. Conjugate
states 〈k, φ| transform according to

〈pref, φ|U †(W (θ, β)) = e−i
~b·~tφ+θ 〈pref, φ| = (3.74)

=

∫
dφ′

2π
(dφφ′(θ, β))∗

〈
pref, φ

′∣∣ (3.75)

The above transformations are unitary with respect to the inner product〈
pref, φ

∣∣ p′ref, φ
′〉 = 2p0

refδ
3(pref − p′ref)2πδ(φ− φ

′) (3.76)

With this formalism, we can write a generic little-group state as |ψf 〉 =
∫ dφ

2π f(φ) |φ〉.
The spin basis, obtained by Fourier transforming in φ, diagolizes R and makes contact

with the helicity representation. Infact by defining, for any integer n,

|pref, n〉 :=

∫
dφ

2π
einφ |pref, φ〉 (3.77)

we obtain the transformation rule

U(W (θ, β)) |pref, n〉 =
∑
n′

dnn′(θ, β)
∣∣pref, n

′〉 (3.78)

with

dnn′(θ, β) =

∫
dφ dφ′

(2π)2
dφφ′(θ, β)einφe−in

′φ′ = e−inθ(ieiα)n−n
′
Jn−n′(κ

√
2|β|) (3.79)

where β = |β|eiα. Conjugate states transform as

〈pref, n|U †(W (θ, β)) =
∑
n′

〈
pref, n

′∣∣ (dnn′(θ, β))∗ (3.80)

and these transformations are unitary with respect to the inner product〈
pref, n

∣∣ p′ref, n
′〉 = 2p0

refδ
3(pref − p′ref)δn′n (3.81)

30this is single-valued (bosonic) type of CSP; in the double-valued (fermionic( type we make the antiperiodic
identification |0〉 = − |2π〉 and the spin basis states happen to be labelled by half-integer n

31This was introduced just for exhibit the E(2) structure
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It is worth noticing that the Bessel functions are the representation functions for the group
E(2) due to their additivity property.

Considering the full unitary action of Lorentz transformations on single-particle CSP
states,

U(Λ) |pref, φ〉 = U(W (θΛ,p, βΛ,p)) |Λpref, φ〉 (3.82)

=

∫
dφ′

2π
dφφ′(θΛ,p, βΛ,p)

∣∣Λpref, φ
′〉 (3.83)

where W (θΛ,p, βΛ,p) = B−1
ΛpΛBp is used to define the little group rotation θΛ,p and transla-

tion βΛ,p induced by the Lorentz transformation Λ. We want to underline that the standard
boost Bp is uniquely chosen, for a given choice of frames for all pref, as in equation (3.57).
Moreover we notice that in the limit κ 7→ 0, Jn−n′(κ

√
2|β|) approaches zero for n 6= n′ and

1 for n = n′, so that the tranformation rule reduces to

dnn′(θ, β) 7→ e−inθδnn′ (3.84)

and we recover as a limit the direct sum of all integer-helicity states by considering all
continuous spin states |pref, n〉.

Let’s recap what is our first goal. We want to find the family of wavefunctions which
behave like continuous spin single particle states. Such wavefunctions have to transform
in infinite-dimensional Lorentz representations and since it is complicated to study infinite-
dimensional irreducible representation of SL(2,C), we decide to work with reducible ones.
In particular we consider wavefunctions ψ(η) that are functions of an auxiliary vector ηµ,
on which Lorentz transformation act as

D(Λ)ψ(η, x) = ψ(Λη,Λx) (3.85)

The reducibility property comes from the fact that we are restricting the domain of ψ(η, x)

to the orbits of η, that is starting from one value of η we can reach only other points on the
same orbit Λη. In the angle basis, the covariance equation (3.60) becomes∫

dφ′

2π
dφφ′(W (Λ, k))ψ({

−−−→
Λpref, φ}, η) = ψ({−→pref, φ},Λ−1η) (3.86)

In this case it is worth noticing that the generator of Lorentz trasformations should be
written, for the transformation in the space of Lorentz four-vectors, as

(Mµν)αβ = i
(
δαµgνβ − δανgµβ

)
(3.87)

whereas in the space of coordinates (x, η)

Mµν = i
(
η[µ∂ν]

η + p[µ∂ν]
p

)
(3.88)

To go further with calculations it is more convenient to consider an appropriate basis in
which one of the vector basis is the reference momentum vector pref, and the other three
vectors are related to the polarization basis ε1 and ε2. In general there is an ambiguity in
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3 The infinite spin representation and string localized fields

the choice of the basis, due to the fact that we can choose different polarization vectors ε1
and ε2 for the same reference vector pref, and we can get different generators t± and R for
the same little group. This is the reason why it is important to fix ε1(pref) and ε2(pref) for a
specific value of pref. Having defined

ε±(pref) =
ε1(pref)± iε2(pref)√

2
(3.89)

and remember the definition of the four vector qµ according to equations (3.66), we can
choose as the "standard" basis

pµref = (p, 0, 0, p) qµ = (q, 0, 0,−q) ε±(k) =
1√
2

(0, 1,±i, 0) (3.90)

It is clear that the standard boost Bp will take pµref to a generic pµ and ε±(pref) to new
complex null ε±(p) at the same time. The following relations

(ε+(p))∗ = (ε−(p)) ε+(p) · ε−(p) = −1 ε(p) · p = 0 (3.91)

are preserved so that the choice of the reference frame at p is consistent. Since the frame
form a basis for all Lorentz vectors, we can decompose the invariants εµνρσ and gµν accord-
ing to this standard basis. So using the definition (3.67), it is possible to extract R and t±
( [9])

R = iερ+ε
σ
−Mρσ (3.92)

t± = ±i
√

2pρrefε
σ
±Mρσ (3.93)

To solve the covariance equation for φ(x, η), we need to find the action of the little group
generators R, t± in the space of coordinates (x, η):

R = −ερ+εσ−(η[ρ∂η,σ]) (3.94)

t± = ±
√

2pρrefε
σ
±(η[ρ∂η,σ]) (3.95)

where we used equation (3.88).

3.7 Differential wave equations for continuous-spin particles and relation
with Wigner’s original wave equations

Let’s start from the covariance equation (3.86). Let’s study the special case Λ = BΛpB
−1
p

in which W (Λ, pref) = 1 and the equation becomes

ψ({
−−−→
Λpref, φ},Λη) = ψ({−→pref, φ}, η) (3.96)

This is satisfied only iff ψ is a scalar-valued function of pref, η and ε±(pref). Since any Lorentz
transformation can be decomposed in a product of boosts Bp and little group elements, any
"scalar" ψ that solves (3.86) for Lorentz transformations W ∈ E(2)pref will also solve (3.86)
for general Λ.
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Remembering the action of little group elements on angle-basis states (3.71), we can
expand W in equation (3.69) for infinitesimal values of the parameters β, β∗ and θ:

ψ − iθRψ = ψ + θ∂φψ (3.97)

ψ +
i√
2
β(t1 − it2)ψ = φ+

i√
2
κe−iφψ (3.98)

ψ +
i√
2
β∗(t1 + it2)ψ = φ+

i√
2
κeiφψ (3.99)

where we used the fact that

ei
~b·~tφ = ei

√
2<(β)t1+i

√
2=(β)t2 (3.100)

e
i κ√

2
[βe−iφ+β∗eiφ] = e

i
[
κ cos(φ)

√
2
(
β+β∗

2

)
+κ sin(φ)

√
2
(
β−β∗

2i

)]
(3.101)

from which (using (3.71))

ei
√

2<(β)t1ψ = e
i
[
κ cos(φ)

√
2
(
β+β∗

2

)]
ψ (3.102)

ei
√

2=(β)t2ψ = e
i
[
κ sin(φ)

√
2
(
β−β∗

2i

)]
ψ (3.103)

(3.104)

Rewriting the system of equations (3.97) explicitly

−i [(η · ε−)(ε+ · ∂η)]ψ = ∂φψ (3.105)

− [(η · ε−)(p · ∂η)− (η · p)(ε− · ∂η)]ψ =
i√
2
κe−iφψ (3.106)

[(η · ε+)(p · ∂η)− (η · p)(ε+ · ∂η)]ψ =
i√
2
κeiφψ (3.107)

We can notice that the set of partial differential equations (3.105) are homogeneous
in η and Fourier-conjugate to themselves32. Any family of solutions ψ to this system of
equations forms a basis of solutions to a particular covariant wave equation. It can be
easily shown (using equation (3.88)) that these differential equations imply[

2(p · η)(p · ∂η)(η · ∂η)− (p · η)2∂2
η − η2(p · ∂η)2 + κ2

]
ψ = (W 2 + κ2)ψ = 0 (3.108)

Following the paper of Schuster-Toro ( [9]), the solutions can be divided into two different
classes:

• solutions smooth in η near η · p = 0

• singular solutions supported on δ(η · p)

It is interesting also to find a connection with Wigner’s covariant wave equations ( [51]),
the solution space of which carries a continuous-spin unitary irreducible representation of
the Poincaré group. While the singular solutions are related to a basis of Wigner equations,
the smooth solutions solve a new class of wave equations.

32Later in the next chapter we will analyze deeply the consequences of this fact
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For later purposes, we want to define the quantity

ε(p, φ) =
i√
2

(
ε+(pref)e

−iφ − ε−(pref)e
iφ
)

(3.109)

in order to associate the angle φ with a direction in the space-time, since the origin φ = 0

has no invariant significance. Let’s start from the singular solutions, that are parametrized
by a generic function f(r) which specifies an arbitrary profile of ψ under rescalings of η:

ψ({p, φ, f}, η) =

∫
drf(r)

∫
dτδ4(η − rε(p, φ)− rτp)e−iτp (3.110)

These solutions satisfies the Wigner’s equations for continuous spin particles

η2 + 1 = 0 (3.111)

p2ψ = 0 (3.112)

p · ηψ = 0 (3.113)

(W 2 + κ2)ψ = (−η2(p · ∂η)2 + κ2)ψ = 0 (3.114)

where we used equation (3.108). To recover a basis of solutions to the Wigner’s equa-
tions we may choose f(r) = δ(r − 1). But this is not mandatory, and one can choose an
ordinary differential equation in the η-space to single out a specific profile f(r): the result-
ing ψ(p, φ, f , η) will then satisfy such equation and the set of Wigner’s PDE (3.111) and
will provide a basis of covariant wavefunctions. A convenient choice can be to impose the
(zeroth order) homogeneity condition in η:

η · ∂ηψ = 0 (3.115)

Regarding smooth solutions, they are parametrized by an arbitrary function f(η · p, η2)

depending on two parameters η · p and η2

ψ({p, φ, f}, η) = f(η · p, η2)e
iκ
η·ε(p,φ)
η·p (3.116)

These solutions satisfy

p2ψ = 0 (3.117)

(W 2 + κ2)ψ = 0 (3.118)

and this time we need two more wave equations to fix completely the functional form of
f(η·p, η2). In order to get contact with the transverse-traceless gauge-fixed form of Fronsdal
equations for massless particles with integer n-helicity particles ( [52]), we want to choose
the following two equations

η · ∂ηψ = nψ (3.119)

p · ∂ηψ = 0 (3.120)

where we fix the degree of homogeneity in the variable η to be n. It is worth noticing (for
future purposes) that the choice n = 0 implies f = 1.

48



4 The structure of intertwiners in the infinite spin representation

4 The structure of intertwiners in the infinite spin representa-

tion

4.1 General solution of the intertwiner condition for the infinite spin repre-
sentation

Let’s consider the intertwiner property

d(W (Λ, p))u(Λ−1e,Λ−1p) = u(e, p)⇔ d(W (Λ, p))u(e, p) = u(Λe,Λp) (4.1)

where (e, p) ∈ T+ × Ḣ+
m, p = Bppref, Λ ∈ L↑+ and for almost all p the function e 7→ u(e, p) is

analytic in the tuboid T+. For the infinite spin representation, the Pauli-Lubanski parameter
κ > 0 labels the faithful representations of the little group Ẽ(2) and dκ acts on L2(R2, dνκ)

according to ( [53])

(dκ(~a,R)f)(~k) = ei~a·
~kf(R−1k) (4.2)

with (~a,R) ∈ Ẽ(2).
Using the surjective homomorphism SL(2,C)→ SO↑(1, 3), we can identify the space of

Hermitian matrices with Minkowski spacetimeM in such a way that the determinant of a
Hermitian matrix is the squared length of the corresponding vector in Minkowski spacetime,
and the Lorentz transformation x 7→ Λx corresponds to the action (by conjugation, with
S ∈ SL(2,C)) X 7→ S(Λ)XS†(Λ) of SL(2,C) on X 33.

Since we can parametrize the little group Ẽ(2) ⊆ SL(2,C) with the two-dimensional
translation generators and the one-dimensional rotation generator

A(~a) =

[
1 a1 − ia2

0 1

]
A(φ) =

[
e−iφ 0

0 eiφ

]
(4.4)

every generic element P ∈ Ẽ(2) can be expressed as a product of these generators

P =

[
e−iφ a1 − ia2

0 eiφ

]
= A

(
φ

2

)
A (~a)A

(
φ

2

)
(4.5)

It is also worth noticing that the Lorentz transformation corresponding to A(φ) acts like the
counter-clockwise rotation R(2φ) in the 1− 2 plane because

A(φ)XA−1(φ) =

[
x0 + x3 e−2iφ(x1 − ix2)

e2iφ(x1 + ix2) x0 + x3

]
(4.6)

33remember that, if {σµ} is the set of Pauli matrices,

xµ = (x0, x1, x2, x3)↔ X = xµσµ =

[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
(4.3)
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4 The structure of intertwiners in the infinite spin representation

We want now to consider special cases of the intertwiner condition (4.1). For Λ = B−1
p ,

this becomes

u(pref, B
−1
p e) = u(e, p)⇔ u(pref, e) = u(p,Bpe) (4.7)

since Λp = pref and so BΛp = id. We can therefore restrict our attention to the function
u(pref, e) for all e. Moreover by choosing Λref ∈ Ẽ(2), one has also

u(pref,Λrefe) = dκ(Λref)u(pref, e) (4.8)

and so it suffices to know u(pref, e) for one point e on each orbit of Ẽ(2).
Recalling the definition of the G-orbit Γ = {q ∈ H+

0 : q · pref = 1}, where pref =

(1, 0, 0, 1) ∈ H+
0 , it is useful to consider the invariants of the orbit. From the parametrization

of the orbit ξ(z), let’s define ξ0 := ξ(0) = 1
2(1, 0, 0,−1) so that ξ0 · pref. Since Ẽ(2) fixes

precisely pref, its orbits are labelled by the only (Lorentz) invariants we can build, namely
X = e2 and Y = e · pref. Using the fact that Ẽ(2) has three parameters and choosing a
reference point e = αpref + βξ0, we notice that the G-action on e is such that

T (~a)R(φ)e = T (~a)R(φ)e = T (~a) (αpref + βξ0) (4.9)

and so the orbits are really two-dimensional surfaces. This is the reason why we chose a
two-parametric family to exhaust all points of the orbits. With our choice of the reference
point e, we have (calculations are pretty straightforward, since pref ·pref = ξ0 ·ξ0 = 0) Y = β

and X = 2αβ.
We already know that the Lorentz transformation corresponding to A(φ) acts like R(2φ)

in the 1-2 plane and pref and ξ0 are invariant under R(2φ). It follows from equation (4.8)
that u(pref, αpref + βξ0) is invariant under dκ(Λref), hence u(pref, αpref + βξ0) as a function
of ~k ∈ κS1 is a multiple g(α, β) · 1 of the constant function 1 with an arbitrary function
g(α, β). Moreover the Lorentz transformation corresponding to A(~a), that is T (~a), is such
that

e = T (~a) (αpref + βξ0) = αpref + βξ(~a) (4.10)

where

ξ(~a) = T (~a)ξ0 =

(
1

2
(|~a|2 + 1),~a,

1

2
(|~a|2 − 1)

)
(4.11)

Therefore it follows that

u(p, e) = u(pref, T (~a (αpref + βξ0))(~k) = (4.12)

= g(α, β)(dκ(A(~a))1)(~k)) = g(α, β) · ei~k·~a (4.13)

In order to express u(p, e) as a function of e, we introduce the four-vector E(~k) = (0,~k, 0)

such that ~k · ~a = −E(~k) · ξ(~a) = −E(~k) · e/β. Thus

u(pref, e)(~k) = g

(
e2

2e · pref
, e · pref

)
· e−i

e·E(~k)
e·pref (4.14)
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4 The structure of intertwiners in the infinite spin representation

Using also the condition (4.7), we can determine the intertwiner function everywhere

uf (p, e)(~k) = g

(
e2

2e · p
, e · p

)
· e−i

e·Ep(~k)

e·p = f(e2, e · p) · e−i
e·Ep(~k)

e·p (4.15)

where Ep(~k) := BpE(~k). These solutions are parametrized by an arbitrary function f(e2, e ·
p) := g

(
e2

2e·p , e · p
)

and they are smooth Schuster and Toro’s wavefunctions, up to an irrel-

evant sign change of ~k.
The parametrization we used so far misses out the singular orbits with e · pref = 0 but

e2 6= 0, that would require α =∞. In that case we can parametrize the orbit via

e = cpref + E(~e) (4.16)

such that e2 = E(~e)2 = −~e2. Acting by the translation operators T (~a) we get

A(~a)E(~e)A†(~a) =

[
1 a1 − ia2

0 1

][
0 e1 − ie2

e1 + ie2 0

][
1 0

a1 + ia2 1

]
= (4.17)

=

[
1 a1 − ia2

0 1

][
(e1 − ie2)a1 + a2(e2 + ie1) e1 − ie2

e1 + ie2 0

]
=[

2(a1e1 + a2e2) e1 − ie2

e1 + ie2 0

]
and coming back to the vector notation T (~a)E(~e) = E(~a)+~a·~e pref. Therefore in this case e is
invariant under the translations orthogonal to ~e and u(pref, e) has support only at ~k parallel
to ~e, i.e. it is an L2-valued distribution containing a δ-function δ(Ep(~k)2e2 − (Ep(~k) · e)2),
like the singular Schuster and Toro’s wavefunctions.

4.2 Comparison of Schuster-Toro wavefunctions with Mund-Schroer-Yngvason
intertwiners

The Mund-Schroer-Yngvason intertwiner has the general form

uF (p, e)(~k) =

∫
d2zei

~k·~zF (e ·Bpξ(~z)) (4.18)

with certain bounds and analyticity properties of F in the upper half plane, explicitly stated
in the theorem 2.1. Following the proof of the theorem in the MSY paper ( [6]), it can be
easily shown that as long as uF (p, e) is analytic and bounded in the tube e = e′+ ie′′ ∈ HC

1 ,
e′′ ∈ V+ the function F (e · Bpξ(~z)) may be generalized to depend also on (e · p). We can
notice that multiplying a Mund-Schroer-Yngvason intertwiner with any positive power of
(p · e) does not change the localization properties, because it is just a derivative in the real
x−space. Moreover multiplying it by an inverse power with the proper iε also respects the
localization along the string because this is just an integration along the string ( [54]); but
it may introduce an IR problem at p 7→ 0.

In order to find the relation between f(e2, e ·p) and F (e ·p, e ·Bpξ(~z)) such that uf = uF ,
we can write F (e · p, e ·Bpξ(~z)) as

F (e · p, e ·Bpξ(~z)) =

∫ +∞

0
ds eiκs(e·Bpξ(~z))F̂ (e · p, s) (4.19)
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4 The structure of intertwiners in the infinite spin representation

Indeed looking at the dependence of F and F̂ on the second argument, F̂ should be sup-
ported on R+ since F has to be analytic in C+ := {z ∈ C : =z > 0}.

It is very useful to evaluate the gaussian integral in the z variable, in order to com-
pare explicitly the structure of the MSY intertwiner with the Schuster-Toro approach. Let’s
consider the following standard integrals∫

dzi exp
[
is
(
Aiz

2
i +Bizi + Ci

)]
= (4.20)

= eisCi
∫

dzi exp

[
isAi

(
zi +

Bi
2Ai

)2
]

exp

[
−is B

2
i

4Ai

]
= eisCie

−is B
2
i

4Ai

√
iπ

sAi
∀ i = 1, 2

where we require <(−iAi) > 0⇔ =A > 0 due to the convergence condition. Therefore∫
d2z exp

[
is

(∑
i

Aiz
2
i +Bizi + Ci

)]
= (4.21)

= eis(C1+C2) iπ

s
√
A1A2

e
−is
[
B2

1
4A1

+
B2

2
4A2

]
(4.22)

In our case, identifying the letters Ai,Bi and Ci with the following expressions

A1 = A2 =
p · e

2
(4.23)

B1 = −κ(B−1
p e)1 +

k1

s
(4.24)

B2 = −κ(B−1
p e)2 +

k2

s
(4.25)

C1 =
1

2
(B−1

p e)+ (4.26)

C2 = 0 (4.27)

where (B−1
p e) is the 4-vector in the light-cone coordinate frame. Using equation (4.21), we

obtain directly ∫
d2z exp

[
is

(∑
i

Aiz
2
i +Bizi + Ci

)]
= (4.28)

= eisκ
1
2

(B−1
p e)+

2iπ

s(p · e)
e
−is
(

k2
1+k2

2
2s2κ(p·e)

)
e
−is
(
κ((B−1

p e)21+(B−1
p e)22)

2(p·e)

)
e
−i
(
−k1(B−1

p e)1−k2(B−1
p e)2

(p·e)

)
=

= eisκ
1
2

(B−1
p e)+

2iπ

s(p · e)
e
−i
(

κ
2s(p·e)

)
e
−is
(
κ(−(B−1

p e)2+(B−1
p e)20−(B−1

p e)23
2(p·e)

)
e
i

(
E(~k)1(B−1

p e)1+E(~k)2(B−1
p e)2

(p·e)

)
=

= eisκ
1
2

(B−1
p e)+e

is κ
2(p·e)(−(B−1

p e)2
0+(B−1

p e)2
3) 2iπ

s(p · e)
e
−i
(

κ
2s(p·e)

)
e
−is
(
−κ(B−1

p e)2

2(p·e)

)
e
−i
(
E(~k)·(B−1

p e)

(p·e)

)

In the light-cone coordinate frame, x · p = 1
2 (x+p− + x−p+) − x1p1 − x2p2 and so x · x =

x+x− − x2
1 − x2

2. Therefore, since (B−1
p e)− = pref · (B−1

p e) = p · e, we can write

eisκ
1
2

(B−1
p e)+ = e

isκ
(B−1
p e)+(B−1

p e)−
2(p·e) = (4.29)

e
isκ

(B−1
p e)2+(B−1

p e)21+(B−1
p e)22

2(p·e)
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and therefore ∫
d2z exp

[
is

(∑
i

Aiz
2
i +Bizi + Ci

)]
= (4.30)

= e
isκ

(B−1
p e)2+(B−1

p e)21+(B−1
p e)22

2(p·e) e
is κ

2(p·e)(−(B−1
p e)2

0+(B−1
p e)2

3) 2iπ

s(p · e)
e
−i
(

κ
2s(p·e)

)
e
−is
(
−κ(B−1

p e)2

2(p·e)

)
e
−i
(
E(~k)·(B−1

p e)

(p·e)

)
=

=
2iπ

s(p · e)
e
−i
(

κ
2s(p·e)

)
e
−is
(
−κ(B−1

p e)2

2(p·e)

)
e
−i
(
E(~k)·(B−1

p e)

(p·e)

)

Rewriting uF (p, e)(~k) in the following Lorentz invariant expression

uF (p, e)(~k) = e
−i
(
E(~k)·(B−1

p e)

(p·e)

)
2iπ

s(p · e)

∫ +∞

0

ds

s
F̂ ((e · p), s)ei

κ
2(p·e) (se2−1/s) (4.31)

we can recognize the similarity with the Schuster-Toro form. Indeed, for e2 = −1, we have

f(−1, e · p) =
2iπ

(p · e)

∫ +∞

0

ds

s
F̂ ((e · p), s)ei

κ
2(p·e) (se2−1/s) (4.32)

and trading s for t := 1
2 log(s) we obtain (remember the hyperbolic identity cosh(2x) =

1 + 2 sinh2(x))

f(−1, e · p) =
4iπ

(p · e)

∫
R

dtF̂ ((e · p), e2t)e
−i κ

2(p·e) (e2t+e−2t)
= (4.33)

=
4iπ

(p · e)
e
−i κ

(p·e)

∫
R

dtF̂ ((e · p), e2t)e
−i κ

(p·e) sinh2(t)

4.3 Properties of the Fourier transform of a Wigner intertwiner for the infi-
nite spin representation

Let’s consider again the intertwiner condition in equation (4.1). Although the inter-
twiner gives a string-localized field only for spacelike e, it is defined for all e ∈ R4 and
we may take the Fourier transform with respect to e. Under a Fourier transformation
uF (p, e)(~k) becomes

û(p, η)(~k) =

∫
d4ee−i(η·e)uF (p, e)(~k) (4.34)

and it is easy to see that the intertwiner condition is invariant under such a transformation,
due to the fact that sending e 7→ Λ−1e∫

d4ee−i(η·e)uF (p,Λe)(~k) 7→
∫

d4ee−i(Λη·e)uF (p, e)(~k) (4.35)

Our purpose is to show that û(p, η)(~k) is supported at η2 = 0. Instead of following a direct
(but complicated) route to prove this statement (e.g. looking to the Fourier trasformation),
we prefer to take an easier route but that requires new ideas.
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4 The structure of intertwiners in the infinite spin representation

We want to focus on the differential equations that û(p, η)(~k) solves. We can apply
the d’Alembert operator (Laplace operator of the Minkowski space) �e in the variable e to
û(p, e)(~k):

�euF (p, e)(~k) = �e

[∫
d2z

∫
dsei

~k·~zeiκs(e·Bpξ(~z))F̂ (e · p, s)
]

= (4.36)

=

∫
d2z

∫
dsei

~k·~z
[
�e

(
eiκs(e·Bpξ(~z))

)
F̂ (e · p, e ·Bpξ(~z)) + eiκs(e·Bpξ(~z))�e

(
F̂ (e · p, s)

)
+

2
∂

∂eµ

(
eiκs(e·Bpξ(~z))

) ∂

∂eµ

(
F̂ (e · p, s)

)]
(4.37)

Since (remember that ξ(~z) and p have to be null vectors)

�e

(
eiκs(e·Bpξ(~z))

)
= −κ2s2 (Bpξ(~z) ·Bpξ(~z)) eiκs(e·Bpξ(~z)) = 0 (4.38)

and

�e

(
F̂ (e · p, s)

)
=

∂

∂eµ

∂

∂eµ

(
F̂ (e · p, s)

)
= (4.39)

= p2 ∂

∂(e · p)
∂

∂(e · p)

(
F̂ (e · p, s)

)
= 0

then

�euF (p, e)(~k) =

∫
d2z

∫
dsei

~k·~z2iκs(p ·Bpξ(~z))eiκs(e·Bpξ(~z))
∂F̂ (e · p, s)
∂(e · p)

= (4.40)

=

∫
d2z

∫
ds 2iκs ei

~k·~zeiκs(e·Bpξ(~z))
∂F̂ (e · p, s)
∂(e · p)

So the last expression (4.40) vanishes iff F̂ (e · p, s) does not depend on (p · e), as in the
original formulation of Mund-Schroer-Yngvason. In this case, and only in this case, Fourier
transforming the expression (4.40) gives an algebraic equation in the space of distributions
−η2ûF (p, η)(~k) = (|~η|2− η2

0)ûF (p, η)(~k) = 0. It is then obvious that the space of solutions is
supported on η2 = 0. To be more precise, there are two classes of solutions to this equation
according to the fact that |~η| = 0 or |~η| 6= 0, but both solutions are supported on η2 = 0

( [55]).
Schuster and Toro’s work regards a one-particle quantum mechanical setting, in which

localization doesn’t play an important role and we have to talk more properly about sup-
ports of the wavefunctions. Since they found (smooth or singular) solutions to the inter-
twiner equation and such equation is invariant under Fourier transformation, it is clear
that such wavefunctions ψ(p, η) are null-supported for an appropriate choice of the auxil-
iary variable η. There is no dynamics in η-space - it is just a useful book-keeping device
for compactly manipulating many tensors simultaneously - and moreover η has not direct
geometrical meaning related to localization properties.

We want to underline that there cannot be any meaningful notion of "string-localization
of wavefunctions", since such notion makes sense only in terms of commutators on the
QFT setting. Indeed regarding η as a label that carries the Lorentz representation D the

54



4 The structure of intertwiners in the infinite spin representation

wavefunctions ψ(x, η) should be considered as localized at x only; conversely regarding
η as a variable then the wavefunctions ψ(x, η) should be considered as localized at (x, η).
This is due to the fact that we are working in a one-particle quantum mechanical setting.

That extra-variable can be "meaningful" only after promoting wavefunctions to gauge
fields Ψ(p, η), for which the role of ηµ is to extend Minkowski spacetime to a cotangent
bundle over Minkowski spacetime where the gauge field Ψ(p, η) lives ([13]).

4.4 Bounds on the Schuster-Toro smooth solutions

Let us control the bounds on uf in equation (4.15) in the tube e = e′+ ie′′ ∈ HC
1 , where

e′′ ∈ V+. In particular we have to consider the modulus of the exponential factor

e
−i
(
Ep(~k)·e

(p·e)

)
(4.41)

and to provide appropriate bounds on it. If we define f := B−1
p e = f ′+ if ′′, with f ′, f ′′ ∈ R

and f ′ · f ′′ = 034, then f ′′ ∈ V+ and f ′2 − f ′′2 = −1 since e′′ ∈ V+ and e2 = −1. It is then
possible to parametrize f ′ and f ′′ as

f ′ = α′p0 + β′ξ0 + E(~f ′) (4.42)

f ′′ = α′′p0 + β′′ξ0 + E(~f ′′) (4.43)

From the previous conditions

f ′ · f ′′ = 0⇒ α′β′′ + α′′β′ − E(~f ′) · E(~f ′′) = 0⇒ ~f ′ · ~f ′′ = α′β′′ + α′′β′ (4.44)

f ′2 − f ′′2 = −1⇒ 2α′β′ − ~f ′2 − 2α′′β′′ + ~f ′′2 = −1

f ′′ ∈ V+ ⇔ f ′′2 > 0 and f0 > 0⇒ 2α′′β′′ > ~f ′′
2

and α′′ +
1

2
β′′ > 0

and then also the following holds

2α′β′ − ~f ′2 − 2α′′β′′ + ~f ′′2 = −1 and 2α′′β′′ > ~f ′′
2
⇒ 2α′β′ + 1 > ~f ′

2
(4.45)

2α′′β′′ > ~f ′′
2

and α′′ +
1

2
β′′ > 0⇒ α′′ > 0 and β′′ > 0

We can now proceed with the calculation. Using the following identities

e · p = e ·Bppref = f · pref (4.46)

e · Ep(~k) = f · E(~k) = −~f · ~k (4.47)

we can rewrite the exponential factor as

e
i

(
(~f ·~k)(f ·pref)

∗

(f ·pref)
2

)
(4.48)

342f ′ ·f ′′ = =(f2) = =(e2), but the complex tube is contained in the set of complex vectors with e2 = −1 ∈ R

55



4 The structure of intertwiners in the infinite spin representation

so that the following inequalities hold

|e
i

(
[(~f ′+i~f ′′)·~k][(f ′+if ′′)·pref]

|f ·pref|
2

)
| ≤ (4.49)

≤ e
<
[
i

(
[(~f ′+i~f ′′)·~k][(f ′+if ′′)·pref]

|f ·pref|
2

)]
≤

≤ e

[
(~f ′·~k)(f ′′·pref)−(~f ′′·~k)(f ′·pref)

|f ·pref|
2

]

But f ′′ · pref = β′′ and f ′ · pref = β′, so using Schwartz inequality

e

[
(~f ′β′′−~f ′′β′)·~k
|f ·pref|

2

]
≤ e

[
|~f ′β′′−~f ′′β′|κ
|f ·pref|

2

]
(4.50)

Now, using also the inequalities we found in equation (4.44) and (4.45)

|~f ′β′′ − ~f ′′β′| = (β′′)2|~f ′|2 + (β′)2|~f ′′|2 − 2β′β′′ ~f ′ · ~f ′′ ≤ (4.51)

≤ (β′′)2(2α′β′ + 1) + (β′)2(2α′′β′′)− 2β′β′′(α′β′′ + α′′β′) ≤ (β′′)2

and therefore finally

|e
−i
(
Ep(~k)·e

(p·e)

)
| ≤ e

κβ′′

|f ·pref|
2 = e

κ<(−if ·pref)

|e·p|2 = e
<
[
−iκ

(e·p)∗

]
= (4.52)

= |e
(
−iκ

(e·p)∗

)
| = |e

(
iκ

(e·p)

)
|

As a result, one may multiply with e
−i κ

(e·p) to get something bounded in the entire tube.
This property is certainly stronger than the bounds provided in the Mund-Schroer-Yngvason
paper ( [6]) in every compact Ω that we already mentioned in the chapter 3.

Therefore if we write

f(−1, e · p) = e
−i κ

(e·p) g((e · p)) (4.53)

where

g((e · p)) =
4iπ

(p · e)

∫
R

dtF̂ ((e · p), e2t)e
−i κ

(p·e) sinh2(t) (4.54)

then uf (p, e)(~k) is bounded in the tube iff g((e · p)) is bounded in C+.

4.5 Two-point function for the infinite spin representation

Let’s consider the structure of a Mund-Schroer-Yngvason string-localized field φF (x, e)

associated with the infinite spin representation Uκ, for a generic function F and for a
generic κ > 0. According to the theorem 3.3 of MSY, it can be written as

φF (x, e) :=

∫
H+
m

dµ(p)

∫
S1

dµ(~k) {eip·xuF (e, p,~k)a†(p,~k) + e−ip·xuF (e, p,~k)a(p,~k)} (4.55)
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4 The structure of intertwiners in the infinite spin representation

The computation of the two-point function M(x, e;x′, e′) for our problem is then pretty
straightforward:

M(x, e;x′, e′) = (φF (x, e)Ω, φF (x′, e′)Ω) =

∫
H+
m

dµ(p)e−ip(x−x
′)

∫
dφ

2π
uF (e, p,~kφ)uF (e′, p,~kφ)

(4.56)

where we used the angle basis φ for the variable ~k (we will choose later φ as the angle
between ~k and a specific vector ~f). The kernel of the two-point function is defined as

M(x, e;x′, e′) =

∫
H+
m

dµ(p)e−ip(x−x
′)M(p, e, e′) (4.57)

and using the previous equation (4.15) concerning the structure of smooth intertwiners we
can single out the ~k−dependence

M(p, e, e′) =

∫
dφ

2π
e
i
e′·Ep(~k)

e′·p e
−i e·Ep(~k)

e·p f(e2, e · p)f((e′)2, e′ · p) (4.58)

The exponent of the exponential factor is linear in ~k and can be written as

i

(
e′ · Ep(~k)

e′ · p
− e · Ep(~k)

e · p

)
= (4.59)

= iB−1
p

(
e′

e′ · p
− e

e · p

)
· E(~k) =: −i ~f · ~k

where ~f is the transverse 1− 2 part of the four-vector

f = B−1
p

(
e′

e′ · p
− e

e · p

)
(4.60)

Since

(f · pref)(f · ξ0) =
1

2
(f0 − f3)(f0 + f3) =

1

2
(f2

0 − f2
3 ) (4.61)

then due to the fact that f · pref vanishes identically we have

2(f · pref)(f · ξ0)− |~f |2 = f2 =

(
e′

e′ · p
− e

e · p

)2

= −|~f |2 (4.62)

Coming back to the integral, we can denote the angle between ~k and ~f as φ so that

M(p, e, e′) = f(e2, e · p)f((e′)2, e′ · p)
∫

dφ

2π
e−i

~k·~f = f(e2, e · p)f((e′)2, e′ · p)
∫

dφ

2π
e−iκ|

~f | cos(φ) =

(4.63)

= f(e2, e · p)f((e′)2, e′ · p)J0(κ|~f |)

where we used the integral representation of the first type (zeroth order) Bessel function
( [56])

Jn(z) =

∫ π

−π

dφ

2π
ei(nφ−z sin(φ)) (4.64)
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4 The structure of intertwiners in the infinite spin representation

In the QFT framework, since e2 = (e′)2 = −1, the final result is

M(p, e, e′) = f(−1, e · p)f(−1, e′ · p)J0(κ|~f |) (4.65)

From the final result in equation (4.63) we can investigate the behaviour of the two-
point function in various directions of string configuration space. We want to check first the
singular values of the argument of the Bessel function, that is the directions where e · p = 0

(or e′ · p = 0). It is easy to see from the expression (4.62) for |~f | that the argument of the
Bessel function behaves like κ/|e · p| (or κ/|e′ · p| respectively) in such directions. Since at
large arguments the Bessel function behaves like

J0(z) ∼

√
2

π|z|
cos
(
|u| − π

4

)
(4.66)

then for p · e 7→ 0+

M(p, e, e′)
p·e7→0+∼ |e · p|

1
2 e
iκ
(

1
e′·p−

1
e·p

)
g(e · p)g(e′ · p)(ei

(
κ
|p·e|−

π
4

)
+ e
−i
(

κ
|p·e|−

π
4

)
)
p·e 7→0+∼

(4.67)

p·e7→0+∼ |e · p|
1
2 g(0)g(e′ · p)(e−i(

π
4 ) + e

−i
(

2 κ
p·e−

π
4

)
)

whereas for p · e 7→ 0−

M(p, e, e′)
p·e 7→0−∼ |e · p|

1
2 g(0)g(e′ · p)(e+i(π4 ) + e

−i
(

2 κ
p·e+π

4

)
) (4.68)

For p · e′ 7→ 0± the asymptotic limits of M(p, e, e′) are the same, with e′ in place of e. Both
asymptotic behaviours indicate that M(p, e, e′) admits a distributional boundary value from
=(e) ∈ V +.

Away from the singular directions, the two-point kernel M(p, e, e′) is regular in the UV
for p 7→ +∞ (⇒ |~f | 7→ 0), since at small arguments of the Bessel function

J0(z) ∼ 1 +O(z2) (4.69)

and then

M(p, e, e′)
p 7→+∞∼ g(+∞)g(+∞)

(
1 +O(κ2|~f |2)

)
(4.70)

At coinciding directions e = e′ ⇒ |~f | = 0 and so M(p, e, e′) is exactly zero.
Regarding the IR behaviour away from singular directions, the Bessel function is again

dominated by rapid oscillations of a cosine function that decays proportional to |p · e|
1
2 .
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5 Conclusion

In the first chapter we built explicitly in a rigorous way the unitary irreducible (positive
energy) representations (UIR) of the Poincaré group, using the method of induced repre-
sentations and classifying all representations by the value of the two Casimir invariants,
PµPµ and WµWµ. In four spacetime dimensions the infinite spin representation, character-
ized by PµPµ = 0 and WµWµ = −κ2 with a continuous (Pauli-Lubanski) parameter κ > 0,
according to Wigner interpretation of elementary particles corresponds to a new type of
exotic particles called continuous spin particles (CSPs). The exotic properties of CSPs are
the presence of infinite degrees of freedom per spacetime point and the presence of the
dimensionful scale κ althought the fact that these particles are massless. In particular it is
possible to interpret physically the infinite spin representations as a limit (Pauli-Lubanski
limit) of the well-known massive spin s representations for m→ 0, s→ +∞ while keeping
the product κ := ms fixed, that is CSPs are considered as high energy (E � m), large s
(s� 1) limit of massive particles in the regime E ∼ ms.

In the second chapter we started to discuss how to construct quantum free fields and
one particle states for CSPs, starting from the finite spin case and showing which problems
arise for the extension to the infinite spin case. In particular, according to Yngvason’s theo-
rem, the pointlike localization for quantum free fields is incompatible with the Wightman’s
framework of axiomatic QFT in the infinite spin case. In fact the algebraic concept of mod-
ular localization applied to UIR of the Poincaré group, that deals with the (sub)algebra of
operators A(O) in a given spacetime region O, and the missing spinorial fiels in the Wigner
construction of covariant (m, s) quantum free fields motivate the introduction of string-
localized fields to describe CSPs. Mathematically, it is thus necessary to introduce a new
variable e that belongs to the hyperboloid of space-like directions H3, and the quantum
free fields (or the associated intertwiners) will depend distributionally on this additional
variable and will satisfy a natural extension of the Wightman’s axioms (covariance, locality,
etc.). For bosonic CSPs, we wrote explicitly the structure of a general type of infinite spin
intertwiner (Bp is the standard boost here)

uF (e, p) =

∫
d2zeik·zF (Bpξ(z) · e)

with a dependence on a generic function F that has an analytic extension to the upper
complex half plane following the paper of Mund, Schroer and Yngvason([6]). Moreover we
reviewed the structure of CSPs states, both in the angle and in the spin basis, starting from
the construction of one particle Hilbert space in the infinite spin case H1 = L2(∂V +,dµ)⊗
L2(k, dνκ) with dνκ = δ(|k|2 − κ2). Following Schuster and Toro ([9]), we considered
general solution in form of covariant wavefunctions ψ(x, η) of the intertwiner (little group)
condition d̃(W (Λ, p))u(Λ−1e,Λ−1p) = u(e, p). There are both smooth and singular solutions
and that solutions satisfy different sets of partial differential equations.

In the third chapter, which consists entirely of original work, we developed the general
solution of the intertwiner condition using a suitable parametrization of the orbits of the
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5 Conclusion

little group for massless particles, and we established that the possible solutions are in a
bijective correspondence with Schuster and Toro smooth and singular wavefunctions. In
particular the smooth solutions have the structure (here (Ep(~k) = BpE(~k) and E(~k) =

(0,~k, 0))

uf (p, e)(~k) = f(e2, e · p) · e−i
e·Ep(~k)

e·p

and are parametrized by an arbitrary function f(e2, e · p), whereas the singular solution are
proportional to δ(Ep(~k)2e2−(Ep(~k)·e)2). Moreover, using the explicit form of uF (e, p) found
in Mund, Schroer and Yngvason’s paper, we found a direct correspondence with uf (p, e) by
performing a Gaussian integration in the variable z. This is the main result, which allows to
establish a new relationship between F and f . In addition to this, we found that the Fourier
transform of uF (p, e) is supported on η2 = 0 by showing that �eûF (p, e) = 0, where η is the
Fourier conjugate variable of e. This helped us to make some deep considerations on the
role of locality regarding the infinite spin representation, comparing the works of Schuster,
Toro and Mund, Schroer and Yngvason. Then we found an estimate about a particular
type of intertwiner uf (p, e)(~k) with a function f of the form f(−1, e · p) = e

−i κ
(e·p) g((e ·

p)): uf (p, e)(~k) is bounded in the tube iff g((e · p)) is bounded in C+. At the end we
considered the structure of the two-point function M(x, e;x′, e′) = (φF (x, e)Ω, φF (x′, e′)Ω),
where φF (x, e) is the infinite spin bosonic field with intertwiner uF (x, e). By computing
the two point kernel M(p, e, e′) explicitly, we found the behaviour in various directions
of string configuration space: it behaves like a rapid oscillating function modulated by the
factor |p ·e|

1
2 in singular directions p ·e→ 0+ or p ·e′ → 0+, it is zero at coinciding directions

e = e′, it is -away from singular directions- finite in the UV and again oscillating in the IR.
A future research objective is to study the Pauli-Lubanski limit in more detail (starting

from well-known objects in massive representations of the Poincaré group) and and also
to consider de Sitter infinite-spin fields of the form φF (x, e) = φF (Re, e) ∀R > 0 from the
point of view of local commutativity (which give rise to some paradoxes). It would be also
interesting to study the dynamics of infinite-spin fields, classifying the possible consistent
vertices for CSPs, either self-interacting or interacting with lower spin matter.
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Appendix A

Relation between projective unitary
representation of a group G and a
unitary representation of a suitable
central extension

The functions ω(g, g′) are not totally arbitrary, because the law of associativity holds

(Ug Ug′)Ug′′ = Ug (Ug′ Ug′′)⇒ ω(g, g′)ω(g · g′, g′′) = ω(g, g′ · g′′)ω(g′, g′′) (A.1)

and of course ω(e, e) = 1. These properties define the so called 2-cocycle on G with values
in U(1). Given two unitary projective representations G 3 g 7→ Ug and G 3 g 7→ U ′g,
they are said to be unitarily equivalent if there exist a unitary operator V : H → H and
a map χ : G → U(1) satisfying χ(g)V UgV

−1 = U ′g ∀ g ∈ G. In order to ask whether a
projective unitary representation G 3 g 7→ Σg of a group G can be described by a unitary
representation of G, we fix an arbitrary representative inside the equivalence class and we
consider its multipliers.

If there is a map χ : G 3 g → χ(g) ∈ C such that

|χ(g)| = 1 and χ(g · g′) = ω(g, g′)χ(g)χ(g′) ∀ g, g′ ∈ G (A.2)

then the projective unitary representation is equivalent to a unitary representation accord-
ing to our previous definition, and conversely if the multipliers of G 3 g 7→ Ug are trivial,
the χ satisfies the equation (A.2).

The product Ĝω := U(1)×ωG endowed with the multiplication defined by (χ, g)·(η, g′) =

(ω(g, g′)χη, g · g′) ∀ (χ, g), (η, g′) ∈ U(1)×ω G is a group owe to equation (A.1), and so we
can associate to each 2-cocycle ω a central extension of G by U(1) (exact sequence):

1→ U(1)
ι−→ Ĝω

pr2−−→ G→ 1 (A.3)

with ι : χ 7→ (χ, e) as the canonical injection (injective homomorphism) and pr2 : (χ, g) 7→ g

as the canonical projection (surjetive homomorphism). Since G is a topological group (as
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U(1)) then for a cocycle ω : G × G → U(1) which is continuous the extension Ĝω is a
topological group and the inclusion and projection in the exact sequence are continuous
homomorphisms. The kernel of the canonical projection pr2 is a normal subgroup N (that
is the range of the canonical injection, and so isomorphic to U(1)) of pairs (χ, e) with
χ ∈ U(1). Since by definition N is contained in the centre of Ĝω, in practice the group G is
naturally identified with the quotient Ĝω/N .

Therefore we can outline the procedure for obtaining all projective unitary representa-
tions G 3 g 7→ Ug of G:

• If G 3 g 7→ Ug has a multiplier function ω, the map Ĝω 3 g 7→ V(χ,g) := χUg is a
unitary Ĝω representation on H. Infact V(χ,g) : H → H is unitary, so V (ω(e, e)−1, e) =

1 and V(χ,g)V(χ′,g′) = χUg χ
′ Ug′ = χχ′ ω(g, g′)Ugg′ = V(χ,g)◦(χ′,g′)

• The representation of G g 7→ Ug := V(1,g) obtained from any unitary representation of
Ĝω 3 (χ, g) 7→ V (χ, g) by restricting the domain of V to elements (1, g), g ∈ G, is a
projective unitary representation iff the following condition holds

V(χ,e) = χω(e, e) 1 ∀χ ∈ U(1) (A.4)

Infact V(χ,g) = χUg implies V (χ, e) = χUe = χω(e, e) 1. Conversely, from (χ, g) =

(χω(e, e)−1, e) ◦ (1, g), if the previous condition (A.4) holds then we could write
V (χ, g) = V (χω(e, e)−1, e)V (1, g) = χV (1, g) = χUg.

In conclusion every projective unitary representation of a group G is the restriction of a
unitary representation of a suitable central extension Ĝω whose multiplier function satisfies
(A.4).

However, we don’t need to know all central extension in order to classify projective
unitary representations, but only the ones which have non equivalent multipliers. Two
multiplier functions of the same group ωa(g, g

′) ∈ U(1) and ωb(g, g
′) ∈ U(1) are called

equivalent if there is a map χ : G→ U(1) such that ωa(g, g′) = χ(g·g′)
χ(g)χ(g′)ωb(g, g

′) ∀ g, g′ ∈ G.
If two projective unitary representations Ua, Ub of G are equivalent, they are restrictions of
unitary representations of central extensions Ĝωa , Ĝωb with equivalent multiplier functions
ωa, ωb.
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Appendix B

Properties of the Poincaré group

The Poincaré group is defined as P := R1,3 o O(1, 3). The semi-orthogonal group
L := O(1, 3), called also Lorentz group, is the group of linear transformations which pre-
serve a signature (1, 3) symmetric bilinear form1 on a real vector space. Clearly O(1, 3) =

{A | AT ηA = η}, that is the group of linear isometries of (M, η). R1,3 is a (3 + 1)-
dimensional Euclidean space equipped with a symmetric bilinear form of signature (1, 3)

and treated as a group of translations in this context. In our universe particle interactions
involving the weak force violate space-reflection symmetry ("parity") and time reversal sym-
metry, hence the Lorentzian manifold appears to be equipped with a local time orientation
and a local space orientation. Infact time reversal operations, parity transformations and
combinations thereof, are not to be local spacetime symmetries. Hence the local spacetime
symmetry group of our universe appears to be a subgroup of the Poincaré group, called
the restricted (proper orthochronous) Poincaré group P↑+ := R1,3 o L↑+ with the restricted
(proper orthochronous) Lorentz group L↑+ = SO↑(1, 3) ( [38]).

There are four generators Pµ of R(1,3), corresponding to the space-time translations.
The group O(1, 3) is semisimple, non compact and has four connected components. A
Lorentz transformation may or may not preserve the direction of time, and it may or may
not preserve the orientation of space; these choices correspond to the four connected com-
ponents. The two components that preserve time form the subgroup O↑(1, 3), whereas the
two components that preserve the orientation of space form the subgroup SO(1, 3), which
are the elements with determinant 1.

The identity component, which preserves both time and space orientations, is the sub-
group SO↑(1, 3), that is the group of proper Lorentz transformations. There are six types
of transformations that generate SO↑(1, 3): three of the generators J i are simple angular
momenta, and the other three Ki are time-space operators known as boosts. Accordingly,
the Poincaré group can be divided into four connected components (classes) differing ac-
cording to signs of the quantity det Λ and Λ0

0 :

• P↑+ (det Λ = 1, Λ0
0 > 0)

• P↓+ = TP↑+ (det Λ = 1, Λ0
0 < 0)

1this symmetric bilinear form is defined, if x, y ∈M, as 〈x, y〉 := xT ηy = xµηµνy
ν
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• P↑− = PP↑+ (det Λ = −1, Λ0
0 > 0)

• P↓− = PTP↑+ (det Λ = −1, Λ0
0 < 0)

where we introduce the parity inversion matrix P = diag(1,−1,−1,−1) and the temporal
inversion matrix T = diag(−1, 1, 1, 1). We can write the full Poincaré group as the union of
his connected components P = P↑+ ∪ TP

↑
+ ∪ PP

↑
+ ∪ PTP

↑
+.

The abelian group of translations is a normal subgroup, while the Lorentz group is also a
subgroup, the stabilizer of the origin. The Poincaré group itself is also the minimal subgroup
of the affine group which includes all translations and Lorentz transformations. The proper
Lorentz group SO↑(1, 3) has a (two-fold) universal cover Spin(3, 1) ∼= SL(2,C)2, which is
the group of 2 by 2 complex matrices with unit determinant. We identify R4 with the space
of 2 by 2 complex self-adjoint matrices by

(x0, x1, x2, x3)↔

[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
(B.1)

with

det

([
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

])
= x2

0 − x2
1 − x2

2 − x2
3 (B.2)

The linear transformation[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
→ A

([
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

])
A† (B.3)

for A ∈ SL(2,C) preserves the determinant and thus the inner product and it also takes
self-adjoint matrices to self-adjoints, and thus R4 to R4. Both A and −A give the same
linear transformation when they act by conjugation, and all elements of SO↑(1, 3) arise as
such conjugation maps( [30]). The covering homomorphism Λ : SL(2,C) → SO↑(1, 3)

can be extended to a covering homomorphism Λ̃ : R4 o SL(2,C) → R4 o SO↑(1, 3) of the
restricted Poincaré group.

2just as the groups SO(3) have double covers Spin(n)
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